Time filter

Source Type

Rein I.D.,Group for Molecular Radiation Biology | Landsverk K.S.,Group for Molecular Radiation Biology | Micci F.,Institute for Medical Informatics | Micci F.,Institute for Cancer Genetics and Informatics | And 2 more authors.
Cell Cycle | Year: 2015

PARP inhibitors have been approved for treatment of tumors with mutations in or loss of BRCA1/2. The molecular mechanisms and particularly the cellular phenotypes resulting in synthetic lethality are not well understood and varying clinical responses have been observed. We have investigated the dose- and time-dependency of cell growth, cell death and cell cycle traverse of 4 malignant lymphocyte cell lines treated with the PARP inhibitor Olaparib. PARP inhibition induced a severe growth inhibition in this cell line panel and increased the levels of phosphorylated H2AX-associated DNA damage in S phase. Repair of the remaining replication related damage caused a G2 phase delay before entry into mitosis. The G2 delay, and the growth inhibition, was more pronounced in the absence of functional ATM. Further, Olaparib treated Reh and Granta-519 cells died by apoptosis, while U698 and JVM-2 cells proceeded through mitosis with aberrant chromosomes, skipped cytokinesis, and eventually died by necrosis. The TP53-deficient U698 cells went through several rounds of DNA replication and mitosis without cytokinesis, ending up as multinucleated cells with DNA contents of up to 16c before dying. In summary, we report here for the first time cell cycle-resolved DNA damage induction, and cell line-dependent differences in the mode of cell death caused by PARP inhibition. © Idun Dale Rein, Kirsti Solberg Landsverk, Francesca Micci, Sebastian Patzke, and Trond Stokke. Source

Rein I.D.,Group for Molecular Radiation Biology | Stokke C.,University of Oslo | Stokke C.,Oslo University College | Jalal M.,The Francis Crick Institute | And 4 more authors.
Cell Cycle | Year: 2015

Induction of DNA double strand breaks leads to phosphorylation and focus-formation of H2AX. However, foci of phosphorylated H2AX (γH2AX) appear during DNA replication also in the absence of exogenously applied injury. We measured the amount and the number of foci of γH2AX in different phases of the cell cycle by flow cytometry, sorting and microscopy in 4 malignant B-lymphocyte cell lines. There were no detectable γH2AX and no γH2AX-foci in G1 cells in exponentially growing cells and cells treated with PARP inhibitor (PARPi) for 24 h to create damage and reduce DNA repair. The amount of γH2AX increased immediately upon S phase entry, and about 10 and 30 γH2AX foci were found in mid-S phase control and PARPi-treated cells, respectively. The γH2AX-labeled damage caused by DNA replication was not fully repaired before entry into G2. Intriguingly, G2 cells populated a continuous distribution of γH2AX levels, from cells with a high content of γH2AX and the same number of foci as S phase cells (termed “G2H” compartment), to cells that there were almost negative and had about 2 foci (termed “G2L” compartment). EdU-labeling of S phase cells revealed that G2H was directly populated from S phase, while G2L was populated from G2H, but in control cells also directly from S phase. The length of G2H in particular increased after PARPi treatment, compatible with longer DNA-repair times. Our results show that cells repair replication-induced damage in G2H, and enter mitosis after a 2–3 h delay in G2L. © Idun Dale Rein, Caroline Stokke, Marwa Jalal, June H Myklebust, Sebastian Patzke, and Trond Stokke. Source

Discover hidden collaborations