Time filter

Source Type

Fuertes E.,University of British Columbia | Fuertes E.,Helmholtz Center for Environmental Research | Brauer M.,University of British Columbia | MacIntyre E.,University of British Columbia | And 24 more authors.
Journal of Allergy and Clinical Immunology

Background: Associations between traffic-related air pollution (TRAP) and allergic rhinitis remain inconsistent, possibly because of unexplored gene-environment interactions. Objective: In a pooled analysis of 6 birth cohorts (Ntotal = 15,299), we examined whether TRAP and genetic polymorphisms related to inflammation and oxidative stress predict allergic rhinitis and sensitization. Methods: Allergic rhinitis was defined with a doctor diagnosis or reported symptoms at age 7 or 8 years. Associations between nitrogen dioxide, particulate matter 2.5 (PM2.5) mass, PM 2.5 absorbance, and ozone, estimated for each child at the year of birth, and single nucleotide polymorphisms within the GSTP1, TNF, TLR2, or TLR4 genes with allergic rhinitis and aeroallergen sensitization were examined with logistic regression. Models were stratified by genotype and interaction terms tested for gene-environment associations. Results: Point estimates for associations between nitrogen dioxide, PM2.5 mass, and PM 2.5 absorbance with allergic rhinitis were elevated, but only that for PM2.5 mass was statistically significant (1.37 [1.01, 1.86] per 5 μg/m3). This result was not robust to single-cohort exclusions. Carriers of at least 1 minor rs1800629 (TNF) or rs1927911 (TLR4) allele were consistently at an increased risk of developing allergic rhinitis (1.19 [1.00, 1.41] and 1.24 [1.01, 1.53], respectively), regardless of TRAP exposure. No evidence of gene-environment interactions was observed. Conclusion: The generally null effect of TRAP on allergic rhinitis and aeroallergen sensitization was not modified by the studied variants in the GSTP1, TNF, TLR2, or TLR4 genes. Children carrying a minor rs1800629 (TNF) or rs1927911 (TLR4) allele may be at a higher risk of allergic rhinitis. © 2013 American Academy of Allergy, Asthma & Immunology. Source

Meijboom M.J.,University of Groningen | Rozenbaum M.H.,University of Groningen | Benedictus A.,University of Groningen | Luytjes W.,Netherlands Vaccine Institute | And 5 more authors.

Introduction: Respiratory syncytial virus (RSV) infection is one of the major causes of respiratory illness in infants, infecting virtually every child before the age of 2 years. Currently, several Phase 1 trials with RSV vaccines in infants are ongoing or have been completed. As yet, no efficacy estimates are available for these vaccine candidates. Nevertheless, cost-effectiveness estimates might be informative to enable preliminary positioning of an RSV vaccine. Methods: A decision analysis model was developed in which a Dutch birth cohort was followed for 12 months. A number of potential vaccination strategies were reviewed such as vaccination at specific ages, a two- or three-dosing scheme and seasonal vaccination versus year-round vaccination. The impact of the assumptions made was explored in various sensitivity analyses, including probabilistic analysis. Outcome measures included the number of GP visits, hospitalizations and deaths, costs, quality-adjusted life years and incremental cost-effectiveness ratios (ICERs). Results: Currently, without vaccination, an annual number of 28,738 of RSV-related GP visits, 1623 hospitalizations, and 4.5 deaths are estimated in children in the age of 0-1 year. The total annual cost to society of RSV in the non-vaccination scenario is €7.7 million (95%CI: 1.7-16.7) and the annual disease burden is estimated at 597 QALYs (95%CI: 133-1319). In case all infants would be offered a potentially safe and effective 3-dose RSV vaccination scheme at the age of 0, 1 and 3 months, the total annual net costs were estimated to increase to €21.2 million, but 544 hospitalizations and 1.5 deaths would be averted. The ICER was estimated at €34,142 (95%CI: € 21,652-€ 87,766) per QALY gained. A reduced dose schedule, seasonal vaccination, and consideration of out-of-pocket expenses all resulted in more favorable ICER values, whereas a reduced vaccine efficacy or a delay in the timing of vaccination resulted in less favorable ICERs. Discussion: Our model used recently updated estimates on the burden of RSV disease in children and it included plausible utilities. However, due to the absence of clinical trial data, a number of crucial assumptions had to be made related to the characteristics of potential RSV vaccine. The outcomes of our modeling exercise show that vaccination of infants against RSV might be cost-effective. However, clinical trial data are warranted. © 2012 Elsevier Ltd. Source

McGeachie M.J.,Harvard University | Zhou X.,Harvard University | Guo F.,Harvard University | Wise R.A.,Johns Hopkins University | And 33 more authors.
New England Journal of Medicine

BACKGROUND Tracking longitudinal measurements of growth and decline in lung function in patients with persistent childhood asthma may reveal links between asthma and subsequent chronic airflow obstruction. METHODS We classified children with asthma according to four characteristic patterns of lung-function growth and decline on the basis of graphs showing forced expiratory volume in 1 second (FEV1), representing spirometric measurements performed from childhood into adulthood. Risk factors associated with abnormal patterns were also examined. To define normal values, we used FEV1 values from participants in the National Health and Nutrition Examination Survey who did not have asthma. RESULTS Of the 684 study participants, 170 (25%) had a normal pattern of lung-function growth without early decline, and 514 (75%) had abnormal patterns: 176 (26%) had reduced growth and an early decline, 160 (23%) had reduced growth only, and 178 (26%) had normal growth and an early decline. Lower baseline values for FEV1, smaller bronchodilator response, airway hyperresponsiveness at baseline, and male sex were associated with reduced growth (P<0.001 for all comparisons). At the last spirometric measurement (mean [±SD] age, 26.0±1.8 years), 73 participants (11%) met Global Initiative for Chronic Obstructive Lung Disease spirometric criteria for lung-function impairment that was consistent with chronic obstructive pulmonary disease (COPD); these participants were more likely to have a reduced pattern of growth than a normal pattern (18% vs. 3%, P<0.001). CONCLUSIONS Childhood impairment of lung function and male sex were the most significant predictors of abnormal longitudinal patterns of lung-function growth and decline. Children with persistent asthma and reduced growth of lung function are at increased risk for fixed airflow obstruction and possibly COPD in early adulthood. (Funded by the Parker B. Francis Foundation and others; ClinicalTrials.gov number, NCT00000575.) © 2016 Massachusetts Medical Society. Source

Van Den Berge M.,University of Groningen | Van Den Berge M.,Groningen Research Institute for Asthma and COPD | Vonk J.M.,University of Groningen | Vonk J.M.,Groningen Research Institute for Asthma and COPD | And 14 more authors.
European Respiratory Journal

Bronchial hyperresponsiveness (BHR) is regarded as a hallmark of asthma, yet it is also present in a considerable number of chronic obstructive pulmonary disease (COPD) patients. Epidemiological studies have shown that BHR provides complementary information to forced expiratory volume in 1 s (FEV1) for development and progression of COPD. We hypothesised that the severity of BHR and its longitudinal changes associate with both clinical and airway inflammation measures in COPD. Our hypothesis was tested in 114 COPD patients (median age 62.9 years, smoking exposure 45.9 pack-yrs) participating in the GLUCOLD (Groningen Leiden Universities Corticosteroids in Obstructive Lung Disease) study, which previously showed an improvement in BHR with fluticasone and fluticasone/salmeterol. At baseline, and 6 and 30 months after treatment, we investigated lung function, including body plethysmography, provocative concentration of methacholine causing a 20% fall in FEV1, sputum induction, and bronchial biopsies. By performing both cross-sectional and longitudinal analyses, we show that BHR in COPD is predominantly associated with residual volume/total lung capacity (a measure of air trapping) and airway inflammation reflected by the number of neutrophils, macrophages and lymphocytes in sputum and bronchial biopsies. Our findings indicate that BHR is an independent trait in COPD and provides important information on phenotype heterogeneity and disease activity. Copyright © 2012 ERS. Source

Oldenburger A.,University of Groningen | Oldenburger A.,Groningen Research Institute for Asthma and COPD | Roscioni S.S.,University of Groningen | Roscioni S.S.,Groningen Research Institute for Asthma and COPD | And 13 more authors.

Cigarette smoke-induced release of pro-inflammatory cytokines including interleukin-8 (IL-8) from inflammatory as well as structural cells in the airways, including airway smooth muscle (ASM) cells, may contribute to the development of chronic obstructive pulmonary disease (COPD). Despite the wide use of pharmacological treatment aimed at increasing intracellular levels of the endogenous suppressor cyclic AMP (cAMP), little is known about its exact mechanism of action. We report here that next to the β 2-agonist fenoterol, direct and specific activation of either exchange protein directly activated by cAMP (Epac) or protein kinase A (PKA) reduced cigarette smoke extract (CSE)-induced IL-8 mRNA expression and protein release by human ASM cells. CSE-induced IκBα-degradation and p65 nuclear translocation, processes that were primarily reversed by Epac activation. Further, CSE increased extracellular signal-regulated kinase (ERK) phosphorylation, which was selectively reduced by PKA activation. CSE decreased Epac1 expression, but did not affect Epac2 and PKA expression. Importantly, Epac1 expression was also reduced in lung tissue from COPD patients. In conclusion, Epac and PKA decrease CSE-induced IL-8 release by human ASM cells via inhibition of NF-κB and ERK, respectively, pointing at these cAMP effectors as potential targets for anti-inflammatory therapy in COPD. However, cigarette smoke exposure may reduce anti-inflammatory effects of cAMP elevating agents via down-regulation of Epac1. © 2012 Oldenburger et al. Source

Discover hidden collaborations