Time filter

Source Type

Göttingen, Germany

Ishikawa M.,Grisebachstr. | Otaka M.,Grisebachstr. | Neumann P.A.,Grisebachstr. | Wang Z.,University of Wisconsin - Milwaukee | And 4 more authors.
Journal of Physiology | Year: 2013

Synaptic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) make up the backbone of the brain reward pathway, a neural circuit that mediates behavioural responses elicited by natural rewards as well as by cocaine and other drugs of abuse. In addition to the well-known modulatory dopaminergic projection, the VTA also provides fast excitatory and inhibitory synaptic input to the NAc, directly regulating NAc medium spiny neurons (MSNs). However, the cellular nature of VTA-to-NAc fast synaptic transmission and its roles in drug-induced adaptations are not well understood. Using viral-mediated in vivo expression of channelrhodopsin 2, the present study dissected fast excitatory and inhibitory synaptic transmission from the VTA to NAc MSNs in rats. Our results suggest that, following repeated exposure to cocaine (15 mg kg-1 day-1× 5 days, i.p., 1 or 21 day withdrawal), a presynaptic enhancement of excitatory transmission and suppression of inhibitory transmission occurred at different withdrawal time points at VTA-to-NAc core synapses. In contrast, no postsynaptic alterations were detected at either type of synapse. These results suggest that changes in VTA-to-NAc fast excitatory and inhibitory synaptic transmissions may contribute to cocaine-induced alteration of the brain reward circuitry. © 2013 The Physiological Society.

Hoppenau C.E.,Grisebachstr. | Tran V.-T.,Grisebachstr. | Kusch H.,Grisebachstr. | Asshauer K.P.,Institute Of Microbiology And Genetics Grisebachstr 8 | And 5 more authors.
Environmental and Experimental Botany | Year: 2014

The vascular plant pathogen Verticillium dahliae colonizes the xylem fluid where only low nutrient concentrations are provided. Biosynthesis of the vitamin thiamine is connected to oxidative stress. The highly conserved VdThi4 protein is localized in fungal mitochondria and is required under vitamin B1 limiting conditions. Deletion of the corresponding VdTHI4 gene by Agrobacterium-mediated transformation resulted in strains which were impaired in growth on thiamine-free medium and could be rescued by additional vitamin supply or by complementation with the original gene after protoplastation. Furthermore, we show that VdThi4 increases fungal stress tolerance such as UV-damage or oxidative stress. The orthologous sti35 gene of Fusarium oxysporum, another vascular wilt fungus, was shown to be involved in stress response, however to be dispensable for pathogenicity on tomato. In contrast, VdTHI4 is required for fungal-induced tomato disease demonstrated by infection assays with a V. dahliae δ. VdTHI4 deletion strain which is still able to invade plants through the roots but is asymptomatic. Our results suggest remarkable differences between two vascular tomato pathogens where VdThi4 is required for pathogenicity of V. dahliae, whereas F. oxysporum still causes disease when the corresponding Sti35 protein is absent. © 2014 Elsevier B.V.

Discover hidden collaborations