Entity

Time filter

Source Type


Pikaard C.S.,Howard Hughes Medical Institute | Scheid O.M.,Gregor Mendel Institute of Molecular Plant Biology
Cold Spring Harbor Perspectives in Biology | Year: 2014

The study of epigenetics in plants has a long and rich history, from initial descriptions of non-Mendelian gene behaviors to seminal discoveries of chromatin-modifying proteins and RNAs that mediate gene silencing in most eukaryotes, including humans. Genetic screens in the model plant Arabidopsis have been particularly rewarding, identifying more than 130 epigenetic regulators thus far. The diversity of epigenetic pathways in plants is remarkable, presumably contributing to the phenotypic plasticity of plant postembryonic development and the ability to survive and reproduce in unpredictable environments. © 2014 Cold Spring Harbor Laboratory Press; all rights reserved. Source


Pecinka A.,Max Planck Institute for Plant Breeding Research | Mittelsten Scheid O.,Gregor Mendel Institute of Molecular Plant Biology
Plant and Cell Physiology | Year: 2012

The investigation of stress responses has been a focus of plant research, breeding and biotechnology for a long time. Insight into stress perception, signaling and genetic determinants of resistance has recently been complemented by growing evidence for substantial stress-induced changes at the chromatin level. These affect specific sequences or occur genome-wide and are often correlated with transcriptional regulation. The majority of these changes only occur during stress exposure, and both expression and chromatin states typically revert to the pre-stress state shortly thereafter. Other changes result in the maintenance of new chromatin states and modified gene expression for a longer time after stress exposure, preparing an individual for developmental decisions or more effective defence. Beyond this, there are claims for stress-induced heritable chromatin modifications that are transmitted to progeny, thereby improving their characteristics. These effects resemble the concept of Lamarckian inheritance of acquired characters and represent a challenge to the uniqueness of DNA sequence-based inheritance. However, with the growing insight into epigenetic regulation and transmission of chromatin states, it is worth investigating these phenomena carefully. While genetic changes (mainly transposon mobility) in response to stress-induced interference with chromatin are well documented and heritable, in our view there is no unambiguous evidence for transmission of exclusively chromatin-controlled stress effects to progeny. We propose a set of criteria that should be applied to substantiate the data for stress-induced, chromatin-encoded new traits. Well-controlled stress treatments, thorough phenotyping and application of refined genome-wide epigenetic analysis tools should be helpful in moving from interesting observations towards robust evidence. © 2012 The Author. Source


Furner I.J.,University of Cambridge | Matzke M.,Gregor Mendel Institute of Molecular Plant Biology
Current Opinion in Plant Biology | Year: 2011

The primary sequence of the genome is broadly constant and superimposed upon that constancy is the postreplicative modification of a small number of cytosine residues to 5-methylcytosine. The pattern of methylation is non-random; some sequence contexts are frequently methylated and some rarely methylated and some regions of the genome are highly methylated and some rarely methylated. Once established, methylation is not static: it can potentially change in response to developmental or environmental cues and this may result in correlated changes in gene expression. Changes can occur passively owing to a failure to maintain DNA methylation through rounds of DNA replication, or actively, through the action of enzymes with DNA glycosylase activity. Recent advances in genetic analyses and the generation of high resolution, genome-wide methylation maps are revealing in unprecedented detail the patterns and dynamic changes of DNA methylation in plants. © 2010 Elsevier Ltd. Source


Vrbsky J.,Gregor Mendel Institute of Molecular Plant Biology
PLoS genetics | Year: 2010

Chromosome termini form a specialized type of heterochromatin that is important for chromosome stability. The recent discovery of telomeric RNA transcripts in yeast and vertebrates raised the question of whether RNA-based mechanisms are involved in the formation of telomeric heterochromatin. In this study, we performed detailed analysis of chromatin structure and RNA transcription at chromosome termini in Arabidopsis. Arabidopsis telomeres display features of intermediate heterochromatin that does not extensively spread to subtelomeric regions which encode transcriptionally active genes. We also found telomeric repeat-containing transcripts arising from telomeres and centromeric loci, a portion of which are processed into small interfering RNAs. These telomeric siRNAs contribute to the maintenance of telomeric chromatin through promoting methylation of asymmetric cytosines in telomeric (CCCTAAA)(n) repeats. The formation of telomeric siRNAs and methylation of telomeres relies on the RNA-dependent DNA methylation pathway. The loss of telomeric DNA methylation in rdr2 mutants is accompanied by only a modest effect on histone heterochromatic marks, indicating that maintenance of telomeric heterochromatin in Arabidopsis is reinforced by several independent mechanisms. In conclusion, this study provides evidence for an siRNA-directed mechanism of chromatin maintenance at telomeres in Arabidopsis. Source


Tamaru H.,Gregor Mendel Institute of Molecular Plant Biology
Genes and Development | Year: 2010

Heterochromatin is typically highly condensed, gene-poor, and transcriptionally silent, whereas euchromatin is less condensed, gene-rich, andmore accessible to transcription. Besides acting as a graveyard for selfish mobile DNA repeats, heterochromatin contributes to important biological functions, such as chromosome segregation during cell division. Multiple features of heterochromatin - including the presence or absence of specific histone modifications, DNAmethylation, and small RNAs - have been implicated in distinguishing heterochromatin from euchromatin in various organisms. Cells malfunction if the genome fails to restrict repressive chromatin marks within heterochromatin domains. How euchromatin and heterochromatin territories are confined remains poorly understood. Recent studies from the fission yeast Schizosaccharomyces pombe, the flowering plant Arabidopsis thaliana, and the filamentous fungusNeurospora crassa have revealed a new role for Jumonji C (JmjC) domain-containing proteins in protecting euchromatin from heterochromatin marks. © 2010 by Cold Spring Harbor Laboratory Press. Source

Discover hidden collaborations