Entity

Time filter

Source Type


Kjellerup S.,Technical University of Denmark | Kjellerup S.,Greenland Institute of Natural Resources | Kiorboe T.,Technical University of Denmark
Biology Letters | Year: 2012

Small cruising Zooplankton depend on remote prey detection and active prey capture for efficient feeding. Direct, passive interception of prey is inherently very inefficient at low Reynolds numbers because the viscous boundary layer surrounding the approaching predator will push away potential prey. Yet, direct interception has been proposed to explain how rapidly cruising, blind copepods feed on non-motile phytoplankton prey. Here, we demonstrate a novel mechanism for prey detection in a cruising copepod, and describe how motile and non-motile prey are discovered by hydromechanical and tactile or, likely, chemical cues, respectively. © 2011 The Royal Society.


Witting L.,Greenland Institute of Natural Resources
Population Ecology | Year: 2013

While it is known that population cycles are driven by delayed density-dependent feedbacks, the search for a common feedback mechanism in natural populations with cyclic dynamics has remained unresolved for almost a century. To identify the existence and cause of delayed feedbacks I apply six age- and sex-structured population dynamics models to seven species of baleen whales (suborder Mysticeti) that were heavily depleted by past commercial whaling. The six models include a predator-prey model with killer whale (Orcinus orca) as the predator, and five singe-species models based on (1) exponential growth, (2) density-regulated growth, (3) density-regulated growth with depensation, (4) delayed density-regulated growth and (5) selection-delayed dynamics. The latter model has a density-regulated growth rate that is accelerated and decelerated by the intra-specific natural selection that arises from the density-dependent competitive interactions between the individuals in the population. Essential parameters are estimated by a Bayesian statistical framework, and it is shown that baleen whales have a delayed recovery relative to density-regulated growth. The time-lag is not explained by depensation, or by interactions with prey or predators. It is instead resolved by a selection-delayed acceleration of the intrinsic growth rate. The results are discussed in relation to the literature on cyclic dynamics, and it is noted (1) that selection-delayed dynamics is both theoretically and empirically sufficient for cyclic population dynamics, (2) that it is widespread in natural populations owing to the widespread occurrence of otherwise unexplained phenotypic cycles in populations with cyclic dynamics, and (3) that there is a lack of empirical evidence showing that predator-prey interactions is a sufficient cause for the cyclic dynamics of natural populations. The conclusion stresses the importance of intra-specific delays in cyclic dynamics, and suggests that it is the acceleration of the growth rate, and not the growth rate itself, that is determined by the density-dependent environment. © 2013 The Society of Population Ecology and Springer Japan.


Heide-Jorgensen M.P.,Greenland Institute of Natural Resources | Laidre K.L.,University of Washington | Quakenbush L.T.,Alaska Department of Fish and Game | Citta J.J.,Alaska Department of Fish and Game
Biology Letters | Year: 2012

The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations. © 2011 The Royal Society.


Merkel F.R.,Greenland Institute of Natural Resources | Johansen K.L.,University of Aarhus
Marine Pollution Bulletin | Year: 2011

Light-induced bird strikes are known to occur when vessels navigate during darkness in icy waters using powerful searchlight. In Southwest Greenland, which is important internationally for wintering seabirds, we collected reports of incidents of bird strikes over 2-3 winters (2006-2009) from navy vessels, cargo vessels and trawlers (total n=19). Forty-one incidents were reported: mainly close to land (<4 km, 78%), but one as far offshore as 205 km. Up to 88 birds were reported killed in a single incident. All occurred between 5 p.m. and 6 a.m. and significantly more birds were involved when visibility was poor (snow) rather than moderate or good. Among five seabird species reported, the common eider (Somateria mollissima) accounted for 95% of the bird casualties. Based on spatial analyses of data on vessel traffic intensity and common eider density we are able to predict areas with high risk of bird strikes in Southwest Greenland. © 2011 Elsevier Ltd.


Stenhouse I.J.,BioDiversity Research Institute | Egevang C.,Greenland Institute of Natural Resources | Phillips R.A.,Natural Environment Research Council
Ibis | Year: 2012

The migrations and winter distributions of most seabirds, particularly small pelagic species, remain poorly understood despite their potential as indicators of marine ecosystem health. Here we report the use of miniature archival light loggers (geolocators) to track the annual migration of Sabine's Gull Larus sabini, a small (c. 200g) Arctic-breeding larid. We describe their migratory routes and identify previously unknown staging sites in the Atlantic Ocean, as well as their main Atlantic wintering area in the southern hemisphere. Sabine's Gulls breeding in northeast Greenland displayed an average annual migration of almost 32000km (n=6), with the longest return journey spanning close to 39000km (not including local movements at staging sites or within the wintering area). On their southern migration, they spent an average of 45days in the Bay of Biscay and Iberian Sea, off the coasts of France, Spain and Portugal. They all wintered in close association with the cold waters of the Benguela Upwelling, spending an average of 152days in that area. On their return north, Sabine's Gulls staged off the west African coast (Morocco, Mauritania, Senegal), spending on average 19days at this site. This leg of migration was particularly rapid, birds travelling an average of 813km/day, assisted by the prevailing winds. Sabine's Gulls generally followed a similar path on their outbound and return migrations, and did not exhibit the broad figure-of-eight pattern (anti clockwise in the southern hemisphere and clockwise in the northern hemisphere) seen in other trans-equatorial seabirds in the Atlantic and Pacific oceans. © 2011 The Authors. Ibis © 2011 British Ornithologists' Union.

Discover hidden collaborations