Cotuit, Massachusetts, United States
Cotuit, Massachusetts, United States

Time filter

Source Type

Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 225.00K | Year: 2016

This SBIR Phase I project will develop an automated composite lamination kitting and stitching machine. This demonstration machine will be capable of placing, cutting and securing 6 layers of dry composite material in parallel. The parallel nature of the process greatly improves manufacturing time, while the reel-to-reel capable layout of the machine allows for manufacturing of long continuous laminates using a comparatively small machine footprint. The key technical hurdles will be software control and mechanical management of multiple parallel plies. During this research project Green Dynamics will demonstrate the proposed machine control proposal and mechanical system layout, which allows multiple plies to spool in parallel and be cut on individual gantries simultaneously. The Green Dynamics lamination kitting and stitching machine will demonstrate the labor and cost savings that can be achieved through automated manufacturing of a single piece laminate. These savings will enable the continued reduction in cost for composite materials, and spur their growth into new markets. Decreasing the cost and improving the quality of composite structures such as wind turbine blades and automotive components is a key path to lower carbon emissions. The proposed manufacturing machine handles multiple fabric rolls in parallel and uses proprietary control algorithms and fabric handling methods to cut and secure up to 6 layers of material simultaneously. As individual layers are processed independently the resulting laminate stack is highly tailored and places material only where it is needed. The final product is transportable, and for very long length parts, can be rolled up to minimize transport size. At the manufacturing location this laminate is placed in the tool in a single step, which greatly reduces the time to manufacture the part and the process time in the tool. No other composite automation machine can provide a single piece lamination which is tailored in multiple directions. The resulting laminate effectively uses the orthotropic properties of composite materials to achieve lower weights while enabling much lower touch labor rates. The multi-roll, linear orientation of our machine allows for reel to reel processing of long narrow laminates in a small machine footprint, and results in a rolled, transportable laminate.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SMALL BUSINESS PHASE I | Award Amount: 225.00K | Year: 2016

This SBIR Phase I project will develop an automated composite lamination kitting and stitching machine. This demonstration machine will be capable of placing, cutting and securing 6 layers of dry composite material in parallel. The parallel nature of the process greatly improves manufacturing time, while the reel-to-reel capable layout of the machine allows for manufacturing of long continuous laminates using a comparatively small machine footprint. The key technical hurdles will be software control and mechanical management of multiple parallel plies. During this research project Green Dynamics will demonstrate the proposed machine control proposal and mechanical system layout, which allows multiple plies to spool in parallel and be cut on individual gantries simultaneously. The Green Dynamics lamination kitting and stitching machine will demonstrate the labor and cost savings that can be achieved through automated manufacturing of a single piece laminate. These savings will enable the continued reduction in cost for composite materials, and spur their growth into new markets. Decreasing the cost and improving the quality of composite structures such as wind turbine blades and automotive components is a key path to lower carbon emissions.


The proposed manufacturing machine handles multiple fabric rolls in parallel and uses proprietary control algorithms and fabric handling methods to cut and secure up to 6 layers of material simultaneously. As individual layers are processed independently the resulting laminate stack is highly tailored and places material only where it is needed. The final product is transportable, and for very long length parts, can be rolled up to minimize transport size. At the manufacturing location this laminate is placed in the tool in a single step, which greatly reduces the time to manufacture the part and the process time in the tool. No other composite automation machine can provide a single piece lamination which is tailored in multiple directions. The resulting laminate effectively uses the orthotropic properties of composite materials to achieve lower weights while enabling much lower touch labor rates. The multi-roll, linear orientation of our machine allows for reel to reel processing of long narrow laminates in a small machine footprint, and results in a rolled, transportable laminate.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 149.80K | Year: 2013

This Small Business Innovation Research (SBIR) Phase I project intends to eliminate the transportation problem faced by large wind turbine blades for land-based wind farms. Transporting blades by truck constrains their size to a limit that falls somewhere between standard dash "50m-60m", due to roadway length, height and weight limitations. If blades over this transportation limit were available for use at land-based wind farms, larger turbines could be used, lower class wind sites would be opened for development, and capacity factors could be increased using existing turbines. This SBIR Phase I project will further develop a modular blade tooling concept that will allow continuous blade spars of 100m or more to be produced on-site at wind farms thus eliminating road transportation issues. This tooling concept encompasses an array of logistical improvements that optimize the effectiveness of this on-site approach. The unique manufacturing method allows superior integration of the structural components of the blade, producing a more robust product that is not susceptible to typical blade failure modes. During this Phase I feasibility will be evaluated "across three major: Manufacturing Methodology...", Structural and Dynamic Performance, and Logistics and Cost Modeling. The broader impact/commercial potential of this project will be to reduce the cost and therefore increase the penetration of wind power. Wind turbine power output increases with the square of the blade radius. Offshore turbines (in the 5MW to 7MW range) use blades that are 60m to 80m in length. If transportation was not an issue for land-based turbines, these turbines would continue to scale in capacity with their offshore counterparts. Longer blades would also allow for the development of lower class wind sites with currently available turbines increasing the penetration of domestic renewable energy. Additionally longer blades would allow an increase in capacity factors for currently available turbines lowering their cost of energy, a topic of critical importance to wind project developers. Blade manufacturing at the wind farm will create local jobs. Although a 100m blade tool may be transportable, its logistics pipeline is large and will still require local transport and all the supply chain logistics of large scale production. However, instead of all this being done out of state or out of the country and then transported to a US farm, a large portion of the blade manufacturing work will occur at the turbine site.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SMALL BUSINESS PHASE I | Award Amount: 149.80K | Year: 2013

This Small Business Innovation Research (SBIR) Phase I project intends to eliminate the transportation problem faced by large wind turbine blades for land-based wind farms. Transporting blades by truck constrains their size to a limit that falls somewhere between standard dash 50m-60m, due to roadway length, height and weight limitations. If blades over this transportation limit were available for use at land-based wind farms, larger turbines could be used, lower class wind sites would be opened for development, and capacity factors could be increased using existing turbines. This SBIR Phase I project will further develop a modular blade tooling concept that will allow continuous blade spars of 100m or more to be produced on-site at wind farms thus eliminating road transportation issues. This tooling concept encompasses an array of logistical improvements that optimize the effectiveness of this on-site approach. The unique manufacturing method allows superior integration of the structural components of the blade, producing a more robust product that is not susceptible to typical blade failure modes. During this Phase I feasibility will be evaluated across three major areas: Manufacturing Methodology,Structural and Dynamic Performance, and Logistics and Cost Modeling.

The broader impact/commercial potential of this project will be to reduce the cost and therefore increase the penetration of wind power. Wind turbine power output increases with the square of the blade radius. Offshore turbines (in the 5MW to 7MW range) use blades that are 60m to 80m in length. If transportation was not an issue for land-based turbines, these turbines would continue to scale in capacity with their offshore counterparts. Longer blades would also allow for the development of lower class wind sites with currently available turbines increasing the penetration of domestic renewable energy. Additionally longer blades would allow an increase in capacity factors for currently available turbines lowering their cost of energy, a topic of critical importance to wind project developers. Blade manufacturing at the wind farm will create local jobs. Although a 100m blade tool may be transportable, its logistics pipeline is large and will still require local transport and all the supply chain logistics of large scale production. However, instead of all this being done out of state or out of the country and then transported to a US farm, a large portion of the blade manufacturing work will occur at the turbine site.


Trademark
Green Dynamics Inc. | Date: 2010-03-17

Coating composition in the nature of paint for industrial applications.


Trademark
Green Dynamics Inc. | Date: 2011-12-06

Exterior paint; House paint; Interior paint; Paint primers; Paints for interior and exterior buildings and components; Primers for preparing surfaces to be painted.


Green Dynamics Inc. | Entity website

Onsite manufacturingCurrently, physical constraints limit the transportation of wind turbine blades. We are developing a blade design, modular tools, and a manufacturing process that will allow continuous blade spars of 60 to 100 meters or more to be produced onsite at wind farms, thus eliminating the current onshore transportation limit


Green Dynamics Inc. | Entity website

Our TechnologyWe are a team of engineers and entrepreneurs who are working to reduce the cost of wind power through innovations in blade design and manufacturing


Green Dynamics Inc. | Entity website

Retrofit BladesWe manufacture retrofit blades for 50-70 kW turbines (8-14m length). The selective use of new, lower cost carbon fiber combined with our automated manufacturing machines make retrofit blades an attractive solution for existing turbines ...


Green Dynamics Inc. | Entity website

Blade MDA SoftwareGreen Dynamics Blade MDA (Multi-Disciplinary Analysis) software is a single, easy to use interface for the design exploration, development, and manufacturing of wind turbine blades. It provides insightful real-time feedback on structures, aerodynamics, financials, and manufacturing ...

Loading Green Dynamics Inc. collaborators
Loading Green Dynamics Inc. collaborators