Time filter

Source Type

LUTRY, Switzerland

Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: NMP-2007-4.0-2 | Award Amount: 4.21M | Year: 2008

The goal of the project is to research and develop textile solar cells in order to get flexible photovoltaic textiles based on novel fibres allowing taking benefit from the solar radiation so as to turn it into energy. Photovoltaic solar energy is being widely studied as one of the sources of renewable energy with major application potential, being considered a real alternative to fossil fuels. Since the development of first photovoltaic cells, solar energy is being an object of continuous research focused on improving the energy efficiency as well as the structure of photovoltaic cells. Last innovations on photovoltaic technology have allowed obtaining flexible solar cells which offer a wide range of possibilities, mainly in wearable applications that need autonomous systems. The present project is in line with last developments and the target is to research on the development of flexible and textile solar cells to obtain photovoltaic textiles, which offer a range of useful applications in a variety of consumer application sectors: home textiles, sports, leisure, clothing, automotive industry For instance, solar tents and parasols with the capability of energy generation. The project research is based on the development of novel fibres with conductive properties as substrate of the structure of flexible photovoltaic cells. From the development of a conductive textile substrate, the project will focus on the research and deposition of different layers that will compose the structure of a textile photovoltaic cell. These cells will be developed with organic and inorganic semiconductive materials. The main technological innovation is based on the development of a wearable and flexible energy source directly on textile products. Fabrics with the capability of generation of clean, usable and wearable energy thanks to their sun exposure, offer a great added value.

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP-2009-1.2-1 | Award Amount: 5.27M | Year: 2011

Widespread uptake of inorganic semiconductor solar cells has been limited, with current solar cell arrays only producing arround 10 GW of the 15 TW (~0.06%) global energy demand, despite the terrestrial solar resource being 120,000 TW. The industry is growing at a cumulative rate of over 40% per annum, even with effects of the financial crisis. However, to contribute to global power this century, growth of around 100% pa is required. The challenge facing the photovoltaic industry is cost effectiveness through much lower embodied energy. Plastic electronics and solution-processable inorganic semiconductors can revolutionise this industry due to their relatively easy and low cost processability (low embodied energy). The efficiency of solar cells fabricated from these cheap materials, is approaching competitive values, with comparison tests showing better performance for sensitizer activated solar cells with reference to amorphous silicon and CIS in Northern European conditions. A 50% increase of the output will make these new solar cells commercially dominant in all markets since they are superior in capturing photons in non-ideal conditions (angled sun, cloud, haze) having a stable maximum power point over the full range of light intensity. To enable this jump in performance in a timely manner, a paradigm shift is required. The revolutionary approach to these solar cells we are undertaking in the SANS project is exactly that and matches the desires of the IEA for mitigation of climate change. Our objectives are to create: highly efficient panchromatic sensitizers, ideally structured semiconducting metal oxide materials and composites; optimized non-volatile and quasi solid-state electrolyte compositions and solid-state organic hole-transporters; achieve full comprehension of the physical processes occurring during solar cell operation; and realization of a 40,000 hrs out door lifetime, being the springboard for commercialization.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2010.10.2-1 | Award Amount: 3.59M | Year: 2010

The proposed project comes with a visionary approach, aiming at development of highly efficient molecular-wire charge transfer platform to be used in a novel generation thin film dye-sensitized solar cells fabricated via organic chemistry routes. The proposed technology combines the assembled dye monolayers, linked with organic molecular wires to semiconducting thin film deposited on optically transparent substrates. Current organic photovoltaic (OPV) cell designs made a significant step towards low cost solar cells technology, however in order to be competitive with Si and CIGs technologies, OPVs have to demonstrate long term stability and power conversion efficiencies above 10% The highest reported power conversion efficiency for OPV device based on bulk heterojunction device with PCBM and low band gap conjugated polymers is today 6.4% but this system seems reaching its limit. Offsets in the energetics of these systems lead to large internal energy losses. The dye-sensitized solar cells (DSC) reach the efficiency above 11% but the problems with the stability of the electrolyte are the current bottleneck. The MOLESOL comes with a novel concept of hybrid device combining the advantages of both concepts (i.e. dye coupled with organic molecular wire to a conductive electrode). This concept will lead to stable cells with enhanced conversion efficiency based on: Reduction of critical length for the charge collection generated in the dye monolayer by the inorganic bottom electrode, using short molecular wires compatible with exciton diffusion length. Replacing current inorganic ITO/FTO (n-type) layer by novel transparent wide band p-type semiconductor with a possibility of engineering the surface workfunction and leading to perfect matching between HOMO of the dye layer and the valence band of semiconductors, allowing larger Voc.

Discover hidden collaborations