Entity

Time filter

Source Type

Frisco, TX, United States

Patent
Greatbatch | Date: 2015-03-26

A composite RF current attenuator for a medical lead includes a conductor having a distal electrode contactable to biological cells, a bandstop filter in series with the lead conductor for attenuating RF currents flow through the lead conductor at a selected center frequency or across a range of frequencies about the center frequency, and a lowpass filter in series with the bandstop filter and forming a portion of the lead conductor. The bandstop filter has a capacitance in parallel with a first inductance. In a preferred form, the lowpass filter includes a second inductance in series with the bandstop filter, wherein the values of capacitance and inductances for the composite RF current attenuator are selected such that it attenuates MRI-induced RF current flow in an MRI environment.


A method of visualizing a user interaction with a clinician programmer is disclosed. A user engagement with respect to a screen of the clinician programmer is detected via one or more sensors associated with the screen of the clinician programmer. One or more locations on the screen of the clinician programmer corresponding to the user engagement is determined. An external monitor is communicatively coupled to the clinician programmer. The external monitor displays one or more cursors that graphically represent the one or more locations on the screen of the clinician programmer corresponding to the user engagement, respectively.


Patent
Greatbatch | Date: 2015-03-27

The present disclosure involves a method of communicating with an implantable medical device. A programmer is provided. The programmer has a plurality of diversity antennas. The diversity antennas are configured to send wireless signals to the implantable medical device. A subset of the diversity antennas is selected. A communications link is established between the programmer and the implantable medical device through the selected subset of the diversity antennas. A link quality of the communications link is measured. A different subset of the diversity antennas is selected to communicate with the implantable medical device if the link quality falls below a predetermined threshold.


A model of an implantable lead is provided via a graphical user interface. The implantable lead is configured to deliver electrical stimulation to a patient via a plurality of electrodes located on the implantable lead. The graphical user interface also provides a plurality of predefined electrode activation patterns that include a coarse pattern and a refined pattern. The coarse pattern corresponds to a first group of electrodes located in a first region of the implantable lead. The refined pattern corresponds to a second group of electrodes located in a second region of the implantable lead. The second region is smaller than, and is a subsection of, the first region. A coarse testing process is performed by selectively activating the first group of electrodes belonging to the coarse pattern. Thereafter, a refined testing process is performed by selectively activating the second group of electrodes belonging to the refined pattern.


The present disclosure involves a charging system for charging an implanted medical system. The charging device includes a replenishable power supply. The charging device includes a coil assembly electrically coupled to the power supply. The coil assembly includes a primary coil and a plurality of sense coils positioned proximate to the primary coil. The charging device includes electrical circuitry operable to: measure an electrical parameter of the coil assembly; and determine a position of the coil assembly relative to a position of the implanted medical device based on the measured electrical parameter. The charging device includes a visual communications interface operable to: receive an input from the electrical circuitry; and visually display on a screen the position of the coil assembly relative to the position of the implanted medical device based on the input received from the electrical circuitry.

Discover hidden collaborations