Time filter

Source Type

Ilavenil S.,Grassland and Forage Division National Institute of Animal Science | Vijayakumar M.,Grassland and Forage Division National Institute of Animal Science | Kim D.H.,Tottori University | Valan Arasu M.,King Saud University | And 2 more authors.
Journal of the Science of Food and Agriculture | Year: 2015

BACKGROUND: Lactic acid bacteria (LAB) are important for the processing of various food products. Although genetically modified organisms have contributed to improvements in various food products, there are some limitations. Thus, the discovery of wild strains from natural sources must be considered as the most suitable approach for identifying new LAB. Therefore, we planned to isolate and characterise the LAB from Italian ryegrass forage and evaluate their biological potential. RESULTS: A total of 28 strains were isolated and screened for their anti-fungal and probiotic properties. A single strain was selected due to its antifungal and probiotic efficiency. The strain was identified as Pediococcus pentosaceus KCC-23. The strain KCC-23 showed effective inhibition against Aspergillus fumigatus, Pencillium chrysogenum, Pencillium roqueforti, Botrytis elliptica and Fusarium oxysporum. Further, it survived low pH, and the presence of bile salts and gastric juice. It exhibited significant aggregation and hydrophobicity properties. The KCC-23 effectively assimilated cholesterol and had the ability to utilise pre-biotics such as raffinose and inulin. Finally, KCC-23 exhibited significant free radical scavenging activity. CONCLUSION: P. pentosaceus KCC-23 showed effective anti-fungal, probiotic and anti-oxidant properties and would be a promising isolate for exploitation in the formulation of food for ruminants and humans. © 2015 Society of Chemical Industry.

Kim D.-H.,Tottori University | Choi K.-C.,Grassland and Forage Division National Institute of Animal Science | Ichinohe T.,The University of Shimane | Song S.-H.,The University of Shimane
Animal Science Journal | Year: 2015

The objective of the present study was to conduct an adipogenic evaluation of different roughage sources and feeding levels during ruminant adipocyte differentiation in vitro. Six wether sheep were divided into a timothy hay feeding group (TFG, n=3) and an Italian ryegrass straw feeding group (IFG, n=3). The sheep were fed high-roughage (HR), medium roughage (MR) and low-roughage (LR) diets in a one-way layout design each over a 6-day period. Sheep serum samples collected on the last day of each dietary treatment were added to an adipogenic induction medium for differentiation of preadipocytes derived from sheep subcutaneous adipose tissue. The cytoplasmic lipid accumulations in the TFG serum-treated preadipocytes were significantly higher than those of the IFG-serum treated preadipocytes on day 12. Messenger RNA expression of CCAAT/enhancer-binding protein (C/EBP)-α, C/EBP-β, C/EBP-δ, fatty-acid-binding protein (aP2) and stearoyl-coenzyme A desaturase (SCD) were regulated by each serum treatment. This study shows that different roughage source diets and roughage-to-concentrate ratio diets can regulate adipocyte differentiation via ruminant blood composition. © 2015 Japanese Society of Animal Science.

Loading Grassland and Forage Division National Institute of Animal Science collaborators
Loading Grassland and Forage Division National Institute of Animal Science collaborators