Entity

Time filter

Source Type


Chen M.-C.,Graduate Institute of Medical science | Lee C.-F.,Institute of Preventive Medicine | Huang W.-H.,National Defense Medical Center | Chou T.-C.,National Defense Medical Center
Biochemical Pharmacology | Year: 2013

The hypoxic environment in tumors is an important factor causing tumor angiogenesis by activating the key transcription factor, hypoxia-inducible factors-1α (HIF-1α). Magnolol isolated from Magnolia officinalis has been reported to exhibit an anticancer activity via elevation of apoptosis. However, whether magnolol inhibits tumor angiogenesis remains unknown. In the present study, we demonstrated that magnolol significantly inhibited angiogenesis in vitro and in vivo evidenced by the attenuation of hypoxia and vascular endothelial growth factor (VEGF)-induced tube formation of human umbilical vascular endothelial cells, vasculature generation in chicken chorioallantoic membrane and Matrigel plug. In hypoxic human bladder cancer cells (T24), treatment with magnolol inhibited hypoxia-stimulated H 2O2 formation, HIF-1α induction including mRNA, protein expression, and transcriptional activity as well as VEGF secretion. Additionally, the enhanced degradation of HIF-1α protein via enhancing prolyl hydroxylase activity and the decreased newly-synthesized HIF-1α protein in hypoxic T24 cells may involve the reduction of HIF-1α protein accumulation by magnolol. Interestingly, magnolol also acts as a VEGFR2 antagonist, and subsequently attenuates the down-stream AKT/mTOR/p70S6K/4E-BP-1 kinase activation both in hypoxic T24 cells and tumor tissues. As expected, administration of magnolol greatly attenuated tumor growth, angiogenesis and the protein expression of HIF-1α, VEGF, CD31, a marker of endothelial cells, and carbonic anhydrase IX, an endogenous marker for hypoxia, in the T24 xenograft mouse model. Collectively, these findings strongly indicate that the anti-agngiogenic activity of magnolol is, at least in part, mediated by suppressing HIF-1α/VEGF-dependent pathways, and suggest that magnolol may be a potential drug for human bladder cancer therapy. © 2013 Elsevier Inc. Source


Hsu Y.-C.,National Defense Medical Center | Cheng C.-P.,Graduate Institute of Medical science | Chang D.-M.,National Defense Medical Center
Journal of Rheumatology | Year: 2011

Objective. Plectranthus amboinicus has been known to treat inflammatory diseases or swelling symptoms. We investigated whether P. amboinicus exhibited an inhibitory effect on osteoclastogenesis in vitro and inflammatory bone erosion in collagen-induced arthritis (CIA) mice, an animal model of rheumatoid arthritis. We attempted to identify the active component of P. amboinicus involved in regulation of osteoclastogenesis. Methods. We treated M-CSF- and RANKL-stimulated murine bone marrow-derived macrophages (BMM) and RANKL-induced RAW264.7 cells with different concentrations of P. amboinicus or rosmarinic acid, a phytopolyphenol purified from P. amboinicus, to monitor osteoclast formation by TRAP staining. The mechanism of the inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. CIA mice were administered gavages of P. amboinicus (375 mg/kg) or placebo. Then clinical, histological, and biochemical measures were assessed to determine the effects of P. amboinicus on synovial inflammation and bone erosion by H&E staining of the inflamed joints and ELISA. Results. Rosmarinic acid strongly inhibited RANKL-induced NF-κB activation and nuclear factor of activated T cells c1 (NFATc1) nuclear translocation in BMM, and also inhibited RANKL-induced formation of TRAP-positive multinucleated cells. A pit formation assay and the CIA animal model showed that P. amboinicus significantly inhibited the bone-resorbing activity of mature osteoclasts. Conclusion. We postulated that rosmarinic acid conferred the inhibitory activity on P. amboinicus for inhibition of osteoclastogenesis via downregulation of RANKL-induced NFATc1 expression. Our results indicated the possibility of P. amboinicus as a new remedy against inflammatory bone destruction. The Journal of Rheumatology Copyright © 2011. All rights reserved. Source


Huang H.-N.,National Taiwan Ocean University | Rajanbabu V.,Academia Sinica, Taiwan | Pan C.-Y.,Academia Sinica, Taiwan | Chan Y.-L.,Graduate Institute of Medical science | And 2 more authors.
Biomaterials | Year: 2013

Methicillin-resistant Staphylococcus aureus (MRSA) causes infections through open skin injuries, and its resistance makes treatment difficult. The antimicrobial peptide Epinecidin-1 (Epi-1) has been reported to possess antibacterial, antifungal, antiviral, and antitumor functions. This study investigated the antimicrobial activity of Epi-1 against skin trauma-mediated MRSA infection in mice. One square centimeter of outer skin was excised from the ventral region of mice, and a lethal dose of MRSA was applied in the presence or absence of methicillin, vancomycin, or Epi-1. While untreated mice and mice treated with methicillin died within four days, mice treated with Epi-1 survived infection. Epi-1 decreased MRSA bacterial counts in the wounded region, enhanced wound closure, and increased angiogenesis at the injury site. Treatment with Epi-1 decreased serum levels of the proinflammatory cytokines TNF-α, IL-6, and MCP-1, and regulated the recruitment of monocytes and clearance of lymphocytes around the wounded region during healing. In conclusion, Epi-1 may be effective at treating clinical MRSA, and may enhance wound recovery when combined with collagen. © 2013 Elsevier Ltd. Source


Cheng C.-P.,Graduate Institute of Medical science | Sytwu H.-K.,A-Life Medical | Chang D.-M.,National Defense Medical Center
Journal of Rheumatology | Year: 2011

Objective. To investigate the immune-modulated effects of decoy receptor 3 (DCR3) in an experimental model of rheumatoid arthritis (RA). Methods. We delivered DCR3 plasmid into collagen-induced arthritis (CIA) mice using the hydrodynamic method and evaluated the serum level of DCR3 protein by ELISA. After immunization, we assessed disease severity of arthritis incidence, arthritis scores, paw thickness, and means of arthritic limbs, and used hematoxylin and eosin staining to observe synovial hyperplasia. We analyzed numbers of murine splenocytes and inguinal lymphocyte cells, cell populations, and serum proinflammatory cytokines by flow cytometry. We investigated B cell proliferation by carboxyfluorescein succinimidyl ester assay. We evaluated serum levels of total IgG2a and type II collagen-specific IgG and IgG2a using ELISA. Results. DCR3 expression in sera significantly attenuated disease severity in CIA mice. We found that DCR3 inhibited the volume of inguinal lymph nodes, numbers of CD19+ B cells, and populations of interferon-g, interleukin 4 (IL-4), IL-17A, and Foxp3-producing CD4+ T cell in vivo. We found that DCR3 inhibited Pam3CSK4 (Toll-like receptor 1/2 ligand)-induced B220+ B cell proliferation in vitro. DCR3 treatment reduced the serum level of IL-6, total IgG2a, and CII-specific IgG2a antibody. Conclusion. We postulated that the protective effects of DCR3 in CIA resulted from modulation of the immune system by maintaining the B/T cell balance and decreasing lymphocyte expansion. We suggest DCR3 as a prophylactic and potential therapeutic agent in the treatment of RA. The Journal of Rheumatology Copyright © 2011. All rights reserved. Source


Peng Y.-J.,Graduate Institute of Medical science | Lee C.-H.,Taipei Medical University Hospital | Wang C.-C.,National Defense Medical Center | Salter D.M.,University of Edinburgh | Lee H.-S.,National Defense Medical Center
Free Radical Biology and Medicine | Year: 2012

Acute gouty arthritis results from monosodium urate (MSU) crystal deposition in joint tissues. Deposited MSU crystals induce an acute inflammatory response which leads to damage of joint tissue. Pycnogenol (PYC), an extract from the bark of Pinus maritime, has documented antiinflammatory and antioxidant properties. The present study aimed to investigate whether PYC had protective effects on MSU-induced inflammatory and nitrosative stress in joint tissues both in vitro and in vivo. MSU crystals upregulated cyclooxygenase 2 (COX-2), interleukin 8 (IL-8) and inducible nitric oxide synthase (iNOS) gene expression in human articular chondrocytes, but only COX-2 and IL-8 in synovial fibroblasts. PYC inhibited the up-regulation of COX-2, and IL-8 in both articular chondrocytes and synovial fibroblasts. PYC attenuated MSU crystal induced iNOS gene expression and NO production in chondrocytes. Activation of NF-κB and SAPK/JNK, ERK1/2 and p38 MAP kinases by MSU crystals in articular chondrocytes and synovial fibroblasts in vitro was attenuated by treatment with PYC. The acute inflammatory cell infiltration and increased expression of COX-2 and iNOS in synovial tissue and articular cartilage following intra-articular injection of MSU crystals in a rat model was inhibited by coadministration of PYC. Collectively, this study demonstrates that PYC may be of value in treatment of MSU crystal-induced arthritis through its anti-inflammatory and anti-nitrosative activities. © 2011 Elsevier Inc. All rights reserved. Source

Discover hidden collaborations