GOJO Industries Inc.

Akron, OH, United States

GOJO Industries Inc.

Akron, OH, United States

Time filter

Source Type

A method and device for indicating whether a dispensable product will require refilling prior to the next scheduled service interval includes tracking the amount of use over a first interval, and calculating a frequency based from the use over the first interval. The quantity remaining is compared with the required amount, which is the product of the number of weeks in the service interval and the calculated frequency. Thus, when the quantity remaining is less that the required amount, a warning will be provided to indicate that the dispensing product should be replaced, as it will be empty before the next service interval.


Hand sanitizers are provided with improved aesthetics and skin-conditioning effects, such that healthcare workers and others subject to high frequency hand hygiene requirements are encouraged to comply with said requirements. The hand sanitizers provide excellent antimicrobial efficacy and skin conditioning benefits that actually increase with increased frequency of use. The sanitizing compositions are hydroalcoholic, and contain a synergistic combination of skin-conditioning agents.


A sequentially activated multi-diaphragm foam pump for a foam dispenser includes a housing with a liquid pump portion and air pump portion secured to the housing. The liquid pump portion has a liquid inlet, a liquid inlet valve, a liquid pump diaphragm, a liquid outlet valve, and a liquid outlet. The air pump portion has a first and second air inlet, a first and second air inlet valve, a first and second air pump diaphragm, and a first and second air outlet. The sequentially activated multi-diaphragm foam pump also includes a mixing chamber that is in fluid communication with the liquid outlet, the first air outlet, and the second air outlet. The liquid pump diaphragm, the first air pump diaphragm, and the second air pump diaphragm operate in sequential order. The liquid pump diaphragm pumps liquid into the mixing chamber, the first air pump diaphragm pumps air into the mixing chamber to mix with the liquid to form a liquid air mixture, and the second air pump diaphragm pumps air into the mixing chamber to mix with the liquid air mixture to form a foamy mixture. The foamy mixture is dispensed through an outlet that is in fluid communication with the mixing chamber.


Refill units for foam dispensers include a container for holding foamable liquid, a foam pump secured to the container, a foaming cartridge, an outlet and an actuation mechanism. The foam pump includes a housing, a liquid pump diaphragm, a plurality of air pump diaphragms, and a mixing chamber. An actuation mechanism releasably connects to a drive system in the dispenser. The actuation mechanism sequentially activates the liquid pump diaphragm and the air pump diaphragms when the refill unit is connected to the dispenser and the drive system. Sequential activation of the liquid pump diaphragm and air pump diaphragms causes the liquid pump diaphragm to pump at least a partial dose of liquid into the mixing chamber and the air pump diaphragms to pump at least a partial dose of air into the mixing chamber.


An exemplary foam dispenser system includes a housing, a container, a motor, an air pump, a foam pump, a first mixing chamber, a second mixing chamber, a foam cartridge, and an outlet for dispensing foam. The container holds a foamable liquid. The foam pump has a liquid pump portion that pumps liquid, and an air pump portion that pumps air. The first mixing chamber is located downstream of the liquid pump portion and the air pump portion, and the liquid and the air mix in the first mixing chamber to create a first foam mixture. The second mixing chamber is located downstream of the first mixing chamber and the air pump, and the first mixture and air from the air pump mix in the second mixing chamber to create a second foam mixture. The second foam mixture travels through the foam cartridge and exits the outlet as rich foam.


Exemplary dispensers, pumps and refill units are disclosed herein. An exemplary refill unit includes a container and a foam pump. The foam pump includes a liquid pump chamber, a compressible air inlet chamber and a compressed air inlet. The volume of the compressible air inlet chamber is less than the volume of air used to make a dose of foam. A one-way air inlet valve is located proximate the compressed air inlet. A piston is included that is movable within the liquid pump chamber and has a liquid seal member and an air seal member. The liquid pump chamber includes a liquid outlet into a center portion of the piston. One or more openings extend through the piston wall and provide a passage from the compressible air chamber to the center portion of the piston. The pump further includes mix media and an outlet.


Patent
GOJO Industries Inc. | Date: 2017-06-21

Among other things, one or more systems and/or techniques for improving performance of a dispensing system are provided herein. The dispensing system may comprise an emitter and a detector. The emitter may be configured to transmit light (e.g., and/or one or more other signals). The detector may be configured to measure light, for example. The detector may determine a first measurement of light while the emitter is not transmitting light. The detector may determine a second measurement of light responsive to the emitter transmitting light. The detector may determine a third measurement of light based upon a comparison of the first measurement of light with the second measurement of light. The detector may be direct current (DC) coupled while determining the third measurement of light.


Patent
GOJO Industries Inc. | Date: 2017-03-15

Exemplary embodiments of vented refill units and dispensers having vented refill units are disclosed herein. An exemplary refill unit includes a non-collapsing inverted container. The container has a neck located at the bottom of the container. A pump is secured to the neck. The pump has a housing that has a cylindrical outside surface. In addition, the housing has an attachment mechanism for attaching the pump to a venting insert. The venting insert has a cylindrical inside surface and a cylindrical outside surface. At least a portion of the venting insert is located within the neck. An air passage is located between the pump housing and the cylindrical inside surface of the venting insert. One or more apertures are located through the venting insert. A one-way air inlet valve is located proximate the one or more apertures.


Patent
GOJO Industries Inc. | Date: 2017-04-03

Apparatuses and techniques are provided for dispensing fluid from a dispenser that includes a flexible membrane having different levels of pliability according to a voltage applied to the flexible membrane. According to some embodiments, a biasing device, such as a spring, is disposed on a first side of the flexible membrane and is configured to apply pressure to the flexible membrane. When a first voltage is applied to the flexible membrane, the flexible membrane becomes sufficiently pliable to enable the spring to flex the flexible membrane, pushing the flexible membrane into a pumping chamber disposed on the opposite side of the flexible membrane relative to the spring. The fluid is stored in the pumping chamber and the flexing of the flexible membrane causes the pumping chamber to compress. Such compression of the pumping chamber forces the pumping chamber to dispense the fluid through a pump outlet.


Patent
GOJO Industries Inc. | Date: 2017-07-19

Methods and compositions for decreased irritation of mammalian skin cells are provided. Compositions contain at least one amide-functionalized oligopeptide. The compositions may advantageously be applied to mammalian skin to effect a reduction in inflammation and redness experienced by the skin, and/or to reduce skin irritation.

Loading GOJO Industries Inc. collaborators
Loading GOJO Industries Inc. collaborators