Entity

Time filter

Source Type

Göttingen, Germany

Kararigas G.,Charite University Hospital | Nguyen B.T.,Goettingen University Hospital | Nguyen B.T.,Hanoi University of Agriculture | Jarry H.,Goettingen University Hospital
Molecular and Cellular Endocrinology | Year: 2014

The modulation of cardiac growth by estrogen in healthy mice is not completely understood. The aim was to investigate the effects of estrogen on cardiac growth in healthy mice lacking either estrogen receptor (ER) α or β. Wild-type (WT), ERα knockout (ERKO) and ERβ knockout (BERKO) 2-month-old mice were ovariectomized and randomly assigned to groups receiving an estradiol (E2)-containing or soy-free (control, CON) diet ( n= 5-7/group). After three months of E2 administration, WT and BERKO mice had significantly lower body weight, higher relative uterus and heart weight than CON mice, while there was no major E2 effect in ERKO mice. Furthermore, there was a higher concentration of E2-responsive genes Igf1 and Myocd in WT and BERKO but not in ERKO mice. Together, these findings indicate that the estrogenic regulation of cardiac growth in healthy mice is primarily mediated through ERα and not ERβ. © 2013 Elsevier Ireland Ltd. Source


Nguyen B.T.,Goettingen University Hospital | Nguyen B.T.,Hanoi University of Agriculture | Kararigas G.,Charite University Hospital | Jarry H.,Goettingen University Hospital
Genes and Nutrition | Year: 2013

The isoflavone genistein is used as a pharmacological compound and as a food supplement. The duration and the level of exposure of humans to genistein are considerable. However, the magnitude of genistein-supplemented dietary interventions necessary to induce any changes in the heart has not been studied so far. The aim of this study was to investigate the dose-dependent effects of dietary genistein in the disease- and stress-free mouse heart. Female C57BL/6J mice at the age of 2 months were ovariectomized and randomly assigned to feed on diets with seven different genistein doses (0.01, 0.03, 0.1, 0.3, 1, 3 and 10 g genistein/kg food) for 3 months. Mice with intact ovaries or ovariectomized fed on soy-free diets were used as controls. Ovariectomy led to an increase in body weight, while the two highest genistein doses prevented this increase. Absolute uterus weight was decreased in the ovariectomized group and all genistein groups except for the 10 g/kg food group compared with the intact ovaries/soy-free group. Considering cardiac mass, although the 3 and 10 g/kg food groups had significantly lower absolute heart weight than all other groups, heart-to-body-weight ratios did not differ between these two groups and the intact ovaries/soy-free group, while all remaining groups had smaller ratios. Next, we observed dose-dependent effects of genistein on cardiac gene expression. The present findings indicate that exposure of female mice to the soy isoflavone genistein influences body weight and cardiac mass and gene expression in a dose-dependent manner. Human exposure to dietary genistein supplements may influence cardiac function. © 2012 The Author(s). Source

Discover hidden collaborations