Waltham, MA, United States
Waltham, MA, United States

Time filter

Source Type

Patent
Massachusetts Institute of Technology, GMZ Energy and Boston College | Date: 2011-02-24

Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.


Patent
Boston College and GMZ Energy | Date: 2011-12-19

Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.


Patent
Boston College and GMZ Energy | Date: 2012-12-19

Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.


Patent
GMZ Energy | Date: 2014-03-13

A thermoelectric power generating module incorporates compliance into the module using a three-dimensional flexible connector. The flexible connector may relieve thermal stress and improve reliability for thermoelectric modules. In addition, the connector may provide a buffer layer (e.g., cushion) to damp mechanical vibrations. In further embodiments, a thermal interface structure for a thermoelectric device includes a thermally conductive body comprising a first compliant surface for directly interfacing with a first component of the thermoelectric device and a second compliant surface, opposite the first surface, for directly interfacing with a second component of the thermoelectric device.


Patent
GMZ Energy | Date: 2014-03-13

A thermoelectric power generating module incorporates compliance into the module using a three-dimensional flexible connector. The flexible connector may relieve thermal stress and improve reliability for thermoelectric modules. In addition, the connector may provide a buffer layer (e.g., cushion) to damp mechanical vibrations. In further embodiments, a thermal interface structure for a thermoelectric device includes a thermally conductive body comprising a first compliant surface for directly interfacing with a first component of the thermoelectric device and a second compliant surface, opposite the first surface, for directly interfacing with a second component of the thermoelectric device.


Patent
GMZ Energy | Date: 2014-06-09

Thermoelectric modules and methods of making thermoelectric modules that include a plurality of row couples each comprising interconnected pairs of n-type and p-type thermoelectric material legs between a first bonding area and a second bonding area, a first connector bonded to each of the first bonding areas of the plurality of row couples, and a second connector bonded to each of the second bonding areas of the plurality of row couples, wherein the first and second connectors provide mechanical support for and electrical connection between the plurality of row couples. The first and second connectors may be connector members having a patterned conductive surface to define a circuit configuration for the module.


Patent
GMZ Energy | Date: 2014-03-12

Methods of fabricating a thermoelectric element include bonding at least one thermoelectric material leg to at least one of a header and an electrical connector using a direct bonding process. The direct bonding process may include liquid diffusion (e.g., brazing) or solid state diffusion bonding. The thermoelectric material leg may be directly bonded to the header or electrical connector without the use of a metal contact layer between the thermoelectric material leg and the header or electrical connector.


Patent
GMZ Energy | Date: 2013-10-09

Methods of fabricating a thermoelectric element with reduced yield loss include forming a solid body of thermoelectric material having first dimension of 150 mm or more and thickness dimension of 5 mm or less, and dicing the body into a plurality of thermoelectric legs, without cutting along the thickness dimension of the body. Further methods include providing a metal material over a surface of a thermoelectric material, and hot pressing the metal material and the thermoelectric material to form a solid body having a contact metal layer and a thermoelectric material layer.


Patent
GMZ Energy | Date: 2014-02-18

A self-powered boiler comprising a burner that burns a fuel to produce a hot combustion product that is used to heat a fluid and a thermoelectric generator (TEG) system comprising a first side in thermal communication with the hot combustion product and a second side in thermal communication with a lower temperature region of the boiler, and a plurality of thermoelectric converters disposed therebetween for generating electric power, wherein the electric power generated by the TEG system is equal to or greater than a total electric power consumed by the boiler under normal operating conditions.


A power generating system comprising a heat exchanger comprising an inlet, an outlet and a conduit extending along a length of the heat exchanger between the inlet and the outlet, and a plurality of thermally conductive fins provided within the conduit, a packing fraction of the fins increasing from a first packing fraction proximate the inlet to a second packing fraction proximate the outlet; and a plurality of thermoelectric power generators positioned along the length of the heat exchanger, each thermoelectric power generator comprising a hot side, a cold side and a thermoelectric element extending there between, wherein the hot sides of the thermoelectric power generators are in thermal contact with the plurality of fins such that the temperature of each hot side is substantially equal along the length of the heat exchanger.

Loading GMZ Energy collaborators
Loading GMZ Energy collaborators