GMO Unit

Parma, Italy
Parma, Italy
Time filter
Source Type

Devos Y.,GMO Unit | Hails R.S.,UK Center for Ecology and Hydrology | Messean A.,French National Institute for Agricultural Research | Perry J.N.,Oaklands Barn | Squire G.R.,James Hutton Institute
Transgenic Research | Year: 2012

One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0. 9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management. © 2011 Springer Science+Business Media B.V.

Kuzmanovic L.,University of Tuscia | Gennaro A.,University of Tuscia | Gennaro A.,GMO Unit | Benedettelli S.,University of Florence | And 3 more authors.
Journal of Experimental Botany | Year: 2014

For the first time, using chromosome engineering of durum wheat, the underlying genetic determinants of a yield-improving segment from Thinopyrum ponticum (7AgL) were dissected. Three durum wheat-Th. ponticum near-isogenic recombinant lines (NIRLs), with distal portions of their 7AL arm (fractional lengths 0.77, 0.72, and 0.60) replaced by alien chromatin, were field-tested for two seasons under rainfed conditions. Yield traits and other agronomic characteristics of the main shoot and whole plant were measured. Loci for seed number per ear and per spikelet were detected in the proximal 7AgL segment (0.60-0.72). Loci determining considerable increases of flag leaf width and area, productive tiller number per plant, biomass per plant, and grain yield per plant were located in the distally adjacent 0.72-0.77 7AgL segment, while in the most distal portion (0.77-1.00) genetic effects on spikelet number per ear were identified. Contrary to previous reports, trials with the bread wheat T4 translocation line, carrying on 7DL a sizeable 7AgL segment of which those present in the durum wheat-Th. ponticum NIRLs represent fractions, gave no yield advantage. The hypothesis that ABA might be a factor contributing to the 7AgL effects was tested by analysing endogenous ABA contents of the NIRLs and their responses to exogenous ABA application. The 7AgL yield-related loci were shown to be ABA-independent. This study highlights the value of wheat-alien recombinant lines for dissecting the genetic and physiological basis of complex traits present in wild germplasm, and provides a basis for their targeted exploitation in wheat breeding. © © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Devos Y.,GMO Unit | Dillen K.,European Commission | Demont M.,International Rice Research Institute
Journal of the Science of Food and Agriculture | Year: 2014

Member states in the European Union (EU) implemented both ex ante coexistence regulations and ex post liability schemes to ensure that genetically modified (GM) and non-GM crops can be cultivated side by side without excluding any agricultural option. Although proportionate coexistence is best achieved if regulated in a flexible manner, most implemented coexistence regulations merely rely on rigid measures. Flexible coexistence regulations, however, would reduce the regulatory burden on certain agricultural options and avoid jeopardizing economic incentives for coexistence. Flexibility can be integrated at: (i) the regulatory level by relaxing the rigidity of coexistence measures in ex ante regulations, yet without offsetting incentives to implement coexistence measures; (ii) the farm level by recommending the use of pollen barriers instead of large and fixed isolation distances; and (iii) the national/regional level by allowing diversified coexistence measures, which are adapted to the heterogeneity of farming in the EU. Owing to difficulties of implementation, the adoption of flexible and proportionate coexistence regulations will inevitably entail challenges. © 2013 Society of Chemical Industry.

Devos Y.,GMO Unit | Meihls L.N.,Boyce Thompson Institute for Plant Research | Kiss J.,Szent Istvan University | Hibbard B.E.,University of Missouri
Transgenic Research | Year: 2013

Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize. © 2012 Springer Science+Business Media Dordrecht.

Devos Y.,GMO Unit | de Schrijver A.,Scientific Institute of Public Health | de Clercq P.,Ghent University | Kiss J.,Szent Istvan University | Romeis J.,ART Agroscope Reckenholz Tänikon
Transgenic Research | Year: 2012

This review paper explores whether the cultivation of the genetically modified Bt-maize transformation event MON 88017, expressing the insecticidal Cry3Bb1 protein against corn rootworms (Coleoptera: Chrysomelidae), causes adverse effects to non-target organisms (NTOs) and the ecological and anthropocentric functions they provide. Available data do not reveal adverse effects of Cry3Bb1 on various NTOs that are representative of potentially exposed taxonomic and functional groups, confirming that the insecticidal activity of the Cry3Bb1 protein is limited to species belonging to the coleopteran family of Chrysomelidae. The potential risk to non-target chrysomelid larvae ingesting maize MON 88017 pollen deposited on host plants is minimal, as their abundance in maize fields and the likelihood of encountering harmful amounts of pollen in and around maize MON 88017 fields are low. Non-target adult chrysomelids, which may occasionally feed on maize MON 88017 plants, are not expected to be affected due to the low activity of the Cry3Bb1 protein on adults. Impacts on NTOs caused by potential unintended changes in maize MON 88017 are not expected to occur, as no differences in composition, phenotypic characteristics and plant-NTO interactions were observed between maize MON 88017 and its near-isogenic line. © 2012 Springer Science+Business Media B.V.

PubMed | Unit 404 Coexistence, Institute for Sustainability science, Scientific Institute of Public Health, Ghent University and GMO Unit
Type: Journal Article | Journal: Transgenic research | Year: 2016

The potential risks that genetically modified plants may pose to non-target organisms and the ecosystem services they contribute to are assessed as part of pre-market risk assessments. This paper reviews the early tier studies testing the hypothesis whether exposure to plant-produced Cry34/35Ab1 proteins as a result of cultivation of maize 59122 is harmful to valued non-target organisms, in particular Arthropoda and Annelida. The available studies were assessed for their scientific quality by considering a set of criteria determining their relevance and reliability. As a case-study, this exercise revealed that when not all quality criteria are met, weighing the robustness of the study and its relevance for risk assessment is not obvious. Applying a worst-case expected environmental concentration of bioactive toxins equivalent to that present in the transgenic crop, confirming exposure of the test species to the test substance, and the use of a negative control were identified as minimum criteria to be met to guarantee sufficiently reliable data. This exercise stresses the importance of conducting studies meeting certain quality standards as this minimises the probability of erroneous or inconclusive results and increases confidence in the results and adds certainty to the conclusions drawn.

PubMed | University of Tuscia, GMO Unit and ENEA
Type: Journal Article | Journal: Comparative cytogenetics | Year: 2016

Traditionally globe artichoke and leafy cardoon have been cultivated for use as vegetables but these crops are now finding multiple new roles in applications ranging from paper production to cheese preparation and biofuel use, with interest in their functional food potential. So far, their chromosome complements have been poorly investigated and a well-defined karyotype was not available. In this paper, a detailed karyo-morphological analysis and molecular cytogenetic studies were conducted on globe artichoke (Cynara cardunculus Linnaeus, 1753 var. scolymus Fiori, 1904) and leafy cardoon (Cynara cardunculus Linneaus, 1753 var. altilis De Candolle, 1838). Fluorescent

Devos Y.,GMO Unit | Sanvido O.,ART Agroscope Reckenholz Tänikon | Sanvido O.,Chemicals and Occupational Health | Tait J.,University of Edinburgh | Raybould A.,Hill International
Transgenic Research | Year: 2014

Regulatory decision-making over the use of products of new technology aims to be based on science-based risk assessment. In some jurisdictions, decision-making about the cultivation of genetically modified (GM) plants is blocked supposedly because of scientific uncertainty about risks to the environment. However, disagreement about the acceptability of risks is primarily a dispute over normative values, which is not resolvable through natural sciences. Natural sciences may improve the quality and relevance of the scientific information used to support environmental risk assessments and make scientific uncertainties explicit, but offer little to resolve differences about values. Decisions about cultivating GM plants will thus not necessarily be eased by performing more research to reduce scientific uncertainty in environmental risk assessments, but by clarifying the debate over values. We suggest several approaches to reveal values in decision-making: (1) clarifying policy objectives; (2) determining what constitutes environmental harm; (3) making explicit the factual and normative premises on which risk assessments are based; (4) better demarcating environmental risk assessment studies from ecological research; (5) weighing the potential for environmental benefits (i.e., opportunities) as well as the potential for environmental harms (i.e., risks); and (6) expanding participation in the risk governance of GM plants. Recognising and openly debating differences about values will not remove controversy about the cultivation of GM plants. However, by revealing what is truly in dispute, debates about values will clarify decision-making criteria. © 2013, Springer Science+Business Media Dordrecht.

Roberts A.F.,ILSI Research Foundation | Devos Y.,GMO Unit | Zhou X.,University of Kentucky
Frontiers in Plant Science | Year: 2015

RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. © 2015 Roberts, Devos, Lemgo and Zhou.

Devos Y.,GMO Unit | Aguilera J.,GMO Unit | Diveki Z.,GMO Unit | Gomes A.,GMO Unit | And 6 more authors.
Transgenic Research | Year: 2014

Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment. © 2013 Springer Science+Business Media Dordrecht.

Loading GMO Unit collaborators
Loading GMO Unit collaborators