Time filter

Source Type

Parma, Italy

Devos Y.,GMO Unit | Meihls L.N.,Boyce Thompson Institute for Plant Research | Kiss J.,Szent Istvan University | Hibbard B.E.,University of Missouri
Transgenic Research

Western corn rootworm (Diabrotica virgifera virgifera; WCR) is a major coleopteran maize pest in North America and the EU, and has traditionally been managed through crop rotation and broad-spectrum soil insecticides. Genetically modified Bt-maize offers an additional management tool for WCR and has been valuable in reducing insecticide use and increasing farm income. A concern is that the widespread, repeated, and exclusive deployment of the same Bt-maize transformation event will result in the rapid evolution of resistance in WCR. This publication explores the potential of WCR to evolve resistance to plant-produced Bt-toxins from the first generation of Diabrotica-active Bt-maize events (MON 863 and MON 88017, DAS-59122-7 and MIR604), and whether currently implemented risk management strategies to delay and monitor resistance evolution are appropriate. In twelve of the twelve artificial selection experiments reported, resistant WCR populations were yielded rapidly. Field-selected resistance of WCR to Cry3Bb1 is documented in some US maize growing areas, where an increasing number of cases of unexpected damage of WCR larvae to Bt-maize MON 88017 has been reported. Currently implemented insect resistance management measures for Bt-crops usually rely on the high dose/refuge (HDR) strategy. Evidence (including laboratory, greenhouse and field data) indicates that several conditions contributing to the success of the HDR strategy may not be met for the first generation of Bt-maize events and WCR: (1) the Bt-toxins are expressed heterogeneously at a low-to-moderate dose in roots; (2) resistance alleles may be present at a higher frequency than initially assumed; (3) WCR may mate in a non-random manner; (4) resistance traits could have non-recessive inheritance; and (5) fitness costs may not necessarily be associated with resistance evolution. However, caution must be exercised when extrapolating laboratory and greenhouse results to field conditions. Model predictions suggest that a 20 % refuge of non-Diabrotica-active Bt-maize can delay resistance evolution in WCR under certain conditions. This publication concludes that further research is needed to resolve the remaining scientific uncertainty related to the appropriateness of the HDR in delaying resistance evolution in WCR, resistance monitoring is essential to detect early warning signs indicating resistance evolution in the field, and that integrated pest management reliant on multiple tactics should be deployed to ensure effective long-term corn rootworm management and sustainable use of Bt-maize. © 2012 Springer Science+Business Media Dordrecht. Source

Kuzmanovic L.,University of Tuscia | Gennaro A.,University of Tuscia | Gennaro A.,GMO Unit | Benedettelli S.,University of Florence | And 3 more authors.
Journal of Experimental Botany

For the first time, using chromosome engineering of durum wheat, the underlying genetic determinants of a yield-improving segment from Thinopyrum ponticum (7AgL) were dissected. Three durum wheat-Th. ponticum near-isogenic recombinant lines (NIRLs), with distal portions of their 7AL arm (fractional lengths 0.77, 0.72, and 0.60) replaced by alien chromatin, were field-tested for two seasons under rainfed conditions. Yield traits and other agronomic characteristics of the main shoot and whole plant were measured. Loci for seed number per ear and per spikelet were detected in the proximal 7AgL segment (0.60-0.72). Loci determining considerable increases of flag leaf width and area, productive tiller number per plant, biomass per plant, and grain yield per plant were located in the distally adjacent 0.72-0.77 7AgL segment, while in the most distal portion (0.77-1.00) genetic effects on spikelet number per ear were identified. Contrary to previous reports, trials with the bread wheat T4 translocation line, carrying on 7DL a sizeable 7AgL segment of which those present in the durum wheat-Th. ponticum NIRLs represent fractions, gave no yield advantage. The hypothesis that ABA might be a factor contributing to the 7AgL effects was tested by analysing endogenous ABA contents of the NIRLs and their responses to exogenous ABA application. The 7AgL yield-related loci were shown to be ABA-independent. This study highlights the value of wheat-alien recombinant lines for dissecting the genetic and physiological basis of complex traits present in wild germplasm, and provides a basis for their targeted exploitation in wheat breeding. © © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. Source

Devos Y.,GMO Unit | Dillen K.,European Commission | Demont M.,International Rice Research Institute
Journal of the Science of Food and Agriculture

Member states in the European Union (EU) implemented both ex ante coexistence regulations and ex post liability schemes to ensure that genetically modified (GM) and non-GM crops can be cultivated side by side without excluding any agricultural option. Although proportionate coexistence is best achieved if regulated in a flexible manner, most implemented coexistence regulations merely rely on rigid measures. Flexible coexistence regulations, however, would reduce the regulatory burden on certain agricultural options and avoid jeopardizing economic incentives for coexistence. Flexibility can be integrated at: (i) the regulatory level by relaxing the rigidity of coexistence measures in ex ante regulations, yet without offsetting incentives to implement coexistence measures; (ii) the farm level by recommending the use of pollen barriers instead of large and fixed isolation distances; and (iii) the national/regional level by allowing diversified coexistence measures, which are adapted to the heterogeneity of farming in the EU. Owing to difficulties of implementation, the adoption of flexible and proportionate coexistence regulations will inevitably entail challenges. © 2013 Society of Chemical Industry. Source

Roberts A.F.,ILSI Research Foundation | Devos Y.,GMO Unit | Lemgo G.N.Y.,A+ Network | Zhou X.,University of Kentucky
Frontiers in Plant Science

RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. © 2015 Roberts, Devos, Lemgo and Zhou. Source

Devos Y.,GMO Unit | Hails R.S.,UK Center for Ecology and Hydrology | Messean A.,French National Institute for Agricultural Research | Perry J.N.,Oaklands Barn | Squire G.R.,James Hutton Institute
Transgenic Research

One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0. 9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management. © 2011 Springer Science+Business Media B.V. Source

Discover hidden collaborations