Glykos Finland Ltd.

Helsinki, Finland

Glykos Finland Ltd.

Helsinki, Finland

Time filter

Source Type

Kaprio T.,University of Helsinki | Satomaa T.,Glykos Finland Ltd. | Heiskanen A.,Glykos Finland Ltd. | Hokke C.H.,Leiden University | And 6 more authors.
Molecular and Cellular Proteomics | Year: 2015

All human cells are covered by glycans, the carbohydrate units of glycoproteins, glycolipids, and proteoglycans. Most glycans are localized to cell surfaces and participate in events essential for cell viability and function. Glycosylation evolves during carcinogenesis, and therefore carcinoma- related glycan structures are potential cancer biomarkers. Colorectal cancer is one of the world's three most common cancers, and its incidence is rising. Novel biomarkers are essential to identify patients for targeted and individualized therapy. We compared the N-glycan profiles of five rectal adenomas and 18 rectal carcinomas of different stages by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Paraffin-embedded tumor samples were deparaffinized, and glycans were enzymatically released and purified. We found differences in glycosylation between adenomas and carcinomas: monoantennary, sialylated, pauci-mannose, and small high-mannose N-glycan structures were more common in carcinomas than in adenomas. We also found differences between stage I-II and stage III carcinomas. Based on these findings, we selected two glycan structures: pauci-mannose and sialyl Lewis a, for immunohistochemical analysis of their tissue expression in 220 colorectal cancer patients. In colorectal cancer, poor prognosis correlated with elevated expression of sialyl Lewis a, and in advanced colorectal cancer, poor prognosis correlated with elevated expression of pauci-mannose. In conclusion, by mass spectrometry we found several carcinoma related glycans, and we demonstrate a method of transforming these results into immunohistochemistry, a readily applicable method to study biomarker expression in patient samples. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.


Kandiba L.,Ben - Gurion University of the Negev | Aitio O.,University of Helsinki | Aitio O.,Glykos Finland Ltd | Helin J.,Glykos Finland Ltd | And 5 more authors.
Molecular Microbiology | Year: 2012

VP4, the major structural protein of the haloarchaeal pleomorphic virus, HRPV-1, is glycosylated. To define the glycan structure attached to this protein, oligosaccharides released by β-elimination were analysed by mass spectrometry and nuclear magnetic resonance spectroscopy. Such analyses showed that the major VP4-derived glycan is a pentasaccharide comprising glucose, glucuronic acid, mannose, sulphated glucuronic acid and a terminal 5-N-formyl-legionaminic acid residue. This is the first observation of legionaminic acid, a sialic acid-like sugar, in an archaeal-derived glycan structure. The importance of this residue for viral infection was demonstrated upon incubation with N-acetylneuraminic acid, a similar monosaccharide. Such treatment reduced progeny virus production by half 4h post infection. LC-ESI/MS analysis confirmed the presence of pentasaccharide precursors on two different VP4-derived peptides bearing the N-glycosylation signal, NTT. The same sites modified by the native host, Halorubrum sp. strain PV6, were also recognized by the Haloferax volcanii N-glycosylation apparatus, as determined by LC-ESI/MS of heterologously expressed VP4. Here, however, the N-linked pentasaccharide was the same as shown to decorate the S-layer glycoprotein in this species. Hence, N-glycosylation of the haloarchaeal viral protein, VP4, is host-specific. These results thus present additional examples of archaeal N-glycosylation diversity and show the ability of Archaea to modify heterologously expressed proteins. © 2012 Blackwell Publishing Ltd.


Natunen S.,Finnish Red Cross Blood Service | Satomaa T.,Glykos Finland Ltd | Pitkanen V.,Finnish Red Cross Blood Service | Salo H.,Glykos Finland Ltd | And 5 more authors.
Glycobiology | Year: 2011

The expression of the epitopes recognized by the monoclonal antibodies Tra-1-60 and Tra-1-81 is routinely used to assess the pluripotency status of human embryonic stem cells (hESCs) and induced pluripotent stem (iPS) cells. Although it is known that the epitopes recognized by Tra-1-60 and Tra-1-81 are carbohydrates, the exact molecular identity of these epitopes has been unclear. Glycan array analysis with more than 500 oligosaccharide structures revealed specific binding of Tra-1-60 and Tra-1-81 to two molecules containing terminal type 1 lactosamine: Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAc and Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Galβ1- 3GlcNAcβ1-3)Galβ1-4Glc. The type 1 disaccharide in itself was not sufficient for binding, indicating that the complete epitope requires an extended tetrasaccharide structure where the type 1 disaccharide is 1,3-linked to type 2 lactosamine. Our mass spectrometric analysis complemented with glycosidase digestions of hESC O-glycans indicated the presence of the extended tetrasaccharide epitope on an O-glycan with the likely structure Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ1-6(Gal1-3)GalNAc. Thus, the present data indicate that the pluripotency marker antibodies Tra-1-60 and Tra-1-81 recognize the minimal epitope Galβ1-3GlcNAcβ1-3Galβ1- 4GlcNAc, which is present in hESCs as a part of a mucin-type O-glycan structure. The exact molecular identity of Tra-1-60 and Tra-1-81 is important for the development of improved tools to characterize the pluripotent phenotype. © 2011 The Author.


Patent
Suomen Punainen Risti Veripalvelu and Glykos Finland Ltd. | Date: 2010-03-24

The invention is directed to a method and composition to control and modify the status of human stem cells by changing their glycosylation, in particular sialylation and fucosylation, levels in a reaction condition where divalent cations are present and cells are kept non-adherent. The invention is further directed to the stem cell population so obtained, the glycosylation of which has been specifically altered.


Nystedt J.,Finnish Red Cross Blood Service | Anderson H.,Finnish Red Cross Blood Service | Tikkanen J.,Finnish Red Cross Blood Service | Pietila M.,University of Oulu | And 12 more authors.
Stem Cells | Year: 2013

The promising clinical effects of mesenchymal stromal/ stem cells (MSCs) rely especially on paracrine and nonimmunogenic mechanisms. Delivery routes are essential for the efficacy of cell therapy and systemic delivery by infusion is the obvious goal for many forms of MSC therapy. Lung adhesion of MSCs might, however, be a major obstacle yet to overcome. Current knowledge does not allow us to make sound conclusions whether MSC lung entrapment is harmful or beneficial, and thus we wanted to explore MSC lung adhesion in greater detail. We found a striking difference in the lung clearance rate of systemically infused MSCs derived from two different clinical sources, namely bone marrow (BM-MSCs) and umbilical cord blood (UCB-MSCs). The BM-MSCs and UCB-MSCs used in this study differed in cell size, but our results also indicated other mechanisms behind the lung adherence. A detailed analysis of the cell surface profiles revealed differences in the expression of relevant adhesion molecules. The UCB-MSCs had higher expression levels of a4 integrin (CD49d, VLA-4), a6 integrin (CD49f, VLA-6), and the hepatocyte growth factor receptor (c-Met) and a higher general fucosylation level. Strikingly, the level of CD49d and CD49f expression could be functionally linked with the lung clearance rate. Additionally, we saw a possible link between MSC lung adherence and higher fibronectin expression and we show that the expression of fibronectin increases with MSC culture confluence. Future studies should aim at developing methods of transiently modifying the cell surface structures in order to improve the delivery of therapeutic cells. © 2012 AlphaMed Press.


Nystedt J.,Finnish Red Cross Blood Service | Anderson H.,Finnish Red Cross Blood Service | Hirvonen T.I.A.,Finnish Red Cross Blood Service | Impola U.,Finnish Red Cross Blood Service | And 9 more authors.
Stem Cells | Year: 2010

Human stem cells contain substantial amounts of the xenoantigen N-glycolylneuraminic acid (Neu5Gc), although the levels of Neu5Gc are low or undetectable in human body fluids and most other human tissues. The lack of Neu5Gc in human tissues has been previously explained by the loss of hydroxylase activity of the human CMP-N-acetylneuraminic acid hydroxylase (CMAH) protein caused by a genetic error in the human Cmah gene. We thus wanted to investigate whether the human redundant Cmah gene could still function in stem cell-specific processes. In this study, we show that CMAH gene expression is significantly upregulated in the adult stem cell populations studied, both of hematopoietic and mesenchymal origin, and identify CMAH as a novel stem cell marker. The CMAH content co-occurs with higher levels of Neu5Gc within stem cells as measured by mass spectrometric profiling. It seems that despite being enzymatically inactive, human CMAH may upregulate the Neu5Gc content of cells by enhancing Neu5Gc uptake from exogenous sources. Furthermore, exposure to exogenous Neu5Gc caused rapid phosphorylation of β-catenin in both CMAH overexpressing cells and bone marrow-derived mesenchymal stem cells, thereby inactivating Wnt/β-catenin signaling. The data demonstrate the first molecular evidence for xenoantigen Neu5Gc-induced alteration of crucial stem cell-specific signaling systems for the maintenance of self renewal. These results add further emphasis to the crucial need for completely xenofree culturing conditions for human stem cells. © AlphaMed Press.


Rahkila J.,Åbo Akademi University | Ekholm F.S.,Åbo Akademi University | Ekholm F.S.,Glykos Finland Ltd | Panchadhayee R.,Åbo Akademi University | And 4 more authors.
Carbohydrate Research | Year: 2014

Phosphorylated β-(1→2)-oligomannosides are found on the cell surface of several Candida species, including Candida albicans (an opportunistic pathogen). These molecules are believed to take part in the invasion process of fungal infections, which in the case of C. albicans can lead to severe bloodstream infections and death, and can therefore be considered important from a biological standpoint. Understanding the mechanism of their action requires access to the corresponding oligosaccharide model compounds in pure form. In the present work, synthesis of the model core structures involved in the invasion process of C. albicans, consisting of phosphorylated β-(1→2)-linked mannotriose and tetraose, is reported. In order to elucidate the nature of these molecules in more detail, an extensive NMR-spectroscopic study encompassing complete spectral characterization, conformational analysis and molecular modelling was performed. The obtained results were also compared to similar chemical entities devoid of the charged phosphate group. © 2013 Elsevier Ltd. All rights reserved.

Loading Glykos Finland Ltd. collaborators
Loading Glykos Finland Ltd. collaborators