GlycoFi Inc.

NH, United States

GlycoFi Inc.

NH, United States

Time filter

Source Type

Patent
GlycoFi Inc. | Date: 2014-10-17

Methods for display of recombinant proteins or protein libraries on the surface of lower eukaryotes such as yeast and filamentous fungi are described. The methods are useful for screening libraries of recombinant proteins in lower eukaryotes to identify particular proteins with desired properties from the array of proteins in the libraries. The methods are particularly useful for constructing and screening antibody libraries in lower eukaryotes.


Patent
GlycoFi Inc. | Date: 2013-07-03

Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man_(5)GlcNAc_(2 )or other structures along human glycosylation pathways. This is achieved using a combination of engineering and/or selection of strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce human-like glycoproteins.


Patent
GlycoFi Inc. | Date: 2014-12-11

A novel gene encoding P. pastoris orotate-phosphoribosyl transferase (URA5) is disclosed. Methods for producing and selecting yeast strains capable of stable genetic integration of heterologous sequences into the host genome are also provided.


Patent
GlycoFi Inc. | Date: 2015-02-23

The present invention relates to eukaryotic host cells which have been modified to produce sialylated glycoproteins by the heterologous expression of a set of glycosyltransferases, including sialyltransferase and/or trans-sialidase, to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. Novel eukaryotic host cells expressing a CMP-sialic acid biosynthetic pathway for the production of sialylated glycoproteins are also provided. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities (such as those involved in sialylation) to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation.


The present invention relates to eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The invention provides nucleic acid molecules and combinatorial libraries which can be used to successfully target and express mammalian enzymatic activities such as those involved in glycosylation to intracellular compartments in a eukaryotic host cell. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified oligosaccharides are created or selected. N-glycans made in the engineered host cells have a Man_(5)GlcNAc_(2 )core structure which may then be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.


Patent
GlycoFi Inc. | Date: 2015-08-26

Method and system for expression systems, based on ade1 and ade2 auxotrophic strains of yeast and fungi, including P. pastoris are disclosed. The expression systems are useful for increased cellular productivity of transformed cell lines and for production of recombinant glycoproteins at industrial scale.


Patent
GlycoFi Inc. | Date: 2014-10-09

The present invention relates to host cells having modified lipid-linked oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells have a GlcNAcMan_(3)GlcNAc_(2 )core structure which may then be modified further by heterologous expression of one or more enzymes, e.g., glycosyl-transferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.


Patent
GlycoFi Inc. | Date: 2015-10-30

Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins I humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans such as Man_(5)GlcNA_(c2 )or other structures along human glycosylation pathways. This is achieved using a combination of engineering and/or selection of strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce human-like glycoproteins.


Patent
GlycoFi Inc. | Date: 2014-05-07

Cell lines having genetically modified glycosylation pathways that allow them to carry out a sequence of enzymatic reactions, which mimic the processing of glycoproteins in humans, have been developed. Recombinant proteins expressed in these engineered hosts yield glycoproteins more similar, if not substantially identical, to their human counterparts. The lower eukaryotes, which ordinarily produce high-mannose containing N-glycans, including unicellular and multicellular fungi are modified to produce N-glycans such as Man_(5)GlcNAc_(2 )or other structures along human glycosylation pathways. This is achieved using a combination of engineering and/or selection of strains which: do not express certain enzymes which create the undesirable complex structures characteristic of the fungal glycoproteins, which express exogenous enzymes selected either to have optimal activity under the conditions present in the fungi where activity is desired, or which are targeted to an organelle where optimal activity is achieved, and combinations thereof wherein the genetically engineered eukaryote expresses multiple exogenous enzymes required to produce human-like glycoproteins.


The present invention relates to lower eukaryotic host cells having modified oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar and sugar nucleotide transporters to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells exhibit GnTIV, GnTV, GnT VI or GnTIX activity, which produce multiantennary N-glycan structures and may be modified further by heterologous expression of one or more enzymes, e.g., glycosyltransferases, sugar, sugar nucleotide transporters, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.

Loading GlycoFi Inc. collaborators
Loading GlycoFi Inc. collaborators