Time filter

Source Type

Katowice, Poland

Wodolazski A.,Glowny Instytut Gornictwa
Przeglad Elektrotechniczny | Year: 2014

This paper presents results of numerical simulation of the synthesis of methanol from syngas in plate microreactor over a catalyst Cu/ZnO/Al2O3. It presents a description of a model of heat transfer and mass of the methanol synthesis in a two phase gas-solid using pseudo-homogeneus dispersion models. The simulation used the software COMSOL Multiphysics. The conversion of CO and catalyst deactivation was described. Verification of the results was based on the works of literature.

The paper presents a computational simulation energy recovery of methanol dehydration to dimethyl ether (DME) in industrial process plant. Heat recovery technology from the viewpoint of energy saving in the environmental protection for the two key nodes in the system: reactor and distillation column was examined. Limited energy helps reduce emissions associated with the combustion of fuels into the atmosphere. Currently operating technological installations should be characterized by energy- and material savings, where significantly reducing the impact of harmful emissions into the environment. These simulations are a valuable tool to support the design of installation to preliminary estimate benefits of circuit materials and energy which introduces a significant innovation in the environmental protection. © 2015, Middle Pomeranian Scientific Society. All rights reserved.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-3-2015 | Award Amount: 3.25M | Year: 2015

ECCSEL aims at gaining recognition as a world-class research infrastructure based within leading European Carbon Capture and Storage (CCS) institutions and knowledge centres. It will be due for registration in 2015, forming a legal entity allocating efforts and resources to selected scientific and technological aspects of the CCS chain. ECCSEL will enable high-ranking researchers and scientists from all regions of Europe (and from third countries) to access state-of-the-art research facilities to conduct advanced technological research actions relevant to CCS. The proposed project aims to : implement ECCSEL as a not-for-profit organisation consistent with the European Research Infrastructure Consortium legal framework ; initiate operations of ECCSEL as a world-class CCS research infrastructure in accordance with the principles developed during the preparatory phase; develop the research infrastructure to an upgraded common standard in terms of quality of services, management and access provision;

Agency: Cordis | Branch: FP7 | Program: CSA-CA | Phase: ENERGY-2007-9.2-01 | Award Amount: 1.33M | Year: 2008

The EFONET CA addresses Task 9.2.1 Energy foresight network. It primarily aims at providing policy relevant input to the EC, notably in relation with the Review of the EU Energy Strategy, the establishment of the Strategic Technology Plan, the implementation of the Action Plan for Energy Efficiency. EFONET will establish and run a discussion platform gathering representatives from the research community and from all relevant stakeholder groups. It features 5 Thematic WPs, each concentrating on one of the main priorities that have already been identified within the energy foresight network established and run by the EC since 2005: methodological approaches and tools for foresight, end-use energy efficiency, foresight in the transport sector, technologies integration scenarios, barriers to the penetration of future technologies. 2 additional WPs deal with project management, network coordination and dissemination. 18 workshops and a final conference will be organised over 2.5 years, with an overall attendance estimated in some 500 participants. The main outputs are (i) country reports summarising state of the art on energy foresight methods and their application (ii) evaluation papers and policy briefs including recommendations for future energy policy formulation and implementation. EFONET aims at becoming a privileged discussion forum on future EU energy policies. To this end, provisions are made to (i) continuously extend network participation (ii) establish and maintain links with other EU energy RTD projects including those emerging for other Tasks in this call (iii) develop a dedicated interactive website to ensure wide dissemination and consolidate a virtual EFONET community that can extend beyond the contractual EFONET lifetime. The EFONET team includes 14 partners and a large group of external experts, covering 19 different countries, representing public and private research, national and EU institutions, industry, international organisations and NGOs.

Agency: Cordis | Branch: FP7 | Program: CP-CSA | Phase: Fission-2013-3.4.1 | Award Amount: 5.53M | Year: 2013

COMET will strengthen the pan-European research initiative on the impact of radiation on man and the environment by facilitating the integration of radioecological research. COMET will build upon the foundations laid by the European Radioecology Alliance (ALLIANCE) and the on-going FP7 STAR Network of Excellence in radioecology. By collaborating with the European platforms on nuclear and radiological emergency response (NERIS) and low dose risk research (MELODI), COMET will significantly aid preparation for the implementation of the Horizon 2020 umbrella structure for Radiation Protection. In close association with STAR and the ALLIANCE, COMET will take forward the development of a Strategic Research Agenda as the basis for developing innovative mechanisms for joint programming and implementation (JPI) of radioecological research. To facilitate and foster future integration under a common federating structure, research activities developed within COMET will be targeted at radioecological research needs that will help achieve priorities of the NERIS and MELODI platforms. These research activities will be initiated in collaboration with researchers from countries where major nuclear accidents have occurred. Flexible funds, unallocated to specific tasks at project initiation, have been included within the COMET budget to facilitate RTD activities identified through the JPI mechanisms developed that are of joint interest to the ALLIANCE, NERIS and MELODI. It will also strengthen the bridge with the non-radiation community. Furthermore, COMET will develop strong mechanisms for knowledge exchange, dissemination and training to enhance and maintain European capacity, competence and skills in radioecology. The COMET consortium has 13 partners, expanding from the organisations within the FP7 STAR project. In particular, COMET partners from countries which have experienced major nuclear accidents (i.e. Ukraine and Japan) and/or who hold Observatory sites.

Discover hidden collaborations