Time filter

Source Type

Glostrup, Denmark

Ramachandran R.,Copenhagen University | Bhatt D.K.,Copenhagen University | Ploug K.B.,Copenhagen University | Hay-Schmidt A.,Glostrup Research Institute | And 3 more authors.
Cephalalgia | Year: 2014

Background and aim: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) systems on the GTN-induced neuronal activation in this model. Materials and methods: The femoral vein was catheterised in rats and GTN was infused (4 mg/kg/min, for 20 minutes, intravenously). Immunohistochemistry was performed to analyse Fos, nNOS and CGRP andWestern blot for measuring nNOS protein expression. The effect of olcegepant, L-nitro-arginine methyl ester (L-NAME) and neurokinin (NK)-1 receptor antagonist L-733060 were analysed on Fos activation. Results: GTN-treated rats showed a significant increase of nNOS and CGRP in dura mater and CGRP in the trigeminal nucleus caudalis (TNC). Upregulation of Fos was observed in TNC four hours after the infusion. This activation was inhibited by pre-treatment with olcegepant. Pre-treatment with L-NAME and L-733060 also significantly inhibited GTN induced Fos expression. Conclusion: The present study indicates that blockers of CGRP, NOS and NK-1 receptors all inhibit GTN induced Fos activation. These findings also predict that pre-treatment with olcegepant may be a better option than post-treatment to study its inhibitory effect in GTN migraine models. © 2013 International Headache Society. Source

Palmisano G.,University of Southern Denmark | Jensen S.,University of Southern Denmark | Le Bihan M.-C.,University of Southern Denmark | Le Bihan M.-C.,French Institute of Health and Medical Research | And 4 more authors.
Molecular and Cellular Proteomics | Year: 2012

Microparticles and exosomes are two of the most well characterized membrane-derived microvesicles released either directly from the plasma membrane or released through the fusion of intracellular multivesicular bodies with the plasma membrane, respectively. They are thought to be involved in many significant biological processes such as cell to cell communication, rescue from apoptosis, and immunological responses. Here we report for the first time a quantitative study of proteins from β-cell-derived microvesicles generated after cytokine induced apoptosis using stable isotope labeled amino acids in cell culture combined with mass spectrometry. We identified and quantified a large number of β-cell-specific proteins and proteins previously described in microvesicles from other cell types in addition to new proteins located to these vesicles. In addition, we quantified specific sites of protein phosphorylation and N-linked sialylation in proteins associated with microvesicles from β-cells. Using pathway analysis software, we were able to map the most distinctive changes between microvesicles generated during growth and after cytokine stimulation to several cell death and cell signaling molecules including tumor necrosis factor receptor superfamily member 1A, tumor necrosis factor, α-induced protein 3, tumor necrosis factor-interacting kinase receptor-interacting ser-ine- threonine kinase 1, and intercellular adhesion molecule 1. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Edvinsson J.,Lund University | Warfvinge K.,Lund University | Warfvinge K.,Glostrup Research Institute | Edvinsson L.,Lund University
Journal of Headache and Pain | Year: 2015

Background: Onabotulinumtoxin type A (BoNT-A) has been found to reduce pain in chronic migraine. The aim of the present study was to ask if BoNT-A can interact directly on sensory mechanisms in the trigeminal ganglion (TG) using an organ culture method. Methods: To induce inflammation, rat TGs were incubated for 24 hrs with either the mitogen MEK1/2 inhibitor U0126, BoNT-A or NaCl. After this the TGs were prepared for immunohistochemistry. Sections of the TG were then incubated with primary antibodies against CGRP (neuronal transmitter), iNOS (inflammatory marker), IL-1β (Interleukin 1β), SNAP-25 (synaptic vesicle docking protein) or SV2-A (Botulinum toxin receptor element). Results: We report that CGRP, iNOS, IL-1β, SNAP-25 and SV2-A were observed in fresh TG with a differential distribution. Interestingly, NaCl organ culture of the TG resulted in enhanced expression of CGRP and SNAP-25 in neurons and iNOS in SGCs. Co-incubation with U0126 or BoNT-A retained the increased expression of SNAP-25, while it decreased the IL-1β immunoreactivity in neurons. The iNOS expression in SGCs returned to levels observed in fresh specimens. Moreover, we observed no alteration SV2-A expression in SGCs. Thus, the overall picture is that both U0126 and BoNT-A have the ability to modify the expression of certain molecules in the TG. Conclusion: We hypothesize that chronic migraine might be associated with some degree of inflammation in the TG that could involve both neurons and SGCs. It is clinically well recognized that treatment with corticosteroids will reduce the symptoms of chronic migraine; however this remedy is associated with long-term side effects. Understanding the mechanisms involved in the expressional alterations may suggest novel ways to modify the changes and indicate novel therapeutics. The results of the present work illustrate one way by which BoNT-A may modify these expressional alterations. © 2015, Edvinsson et al. Source

Edvinsson L.,Lund University | Edvinsson L.,Glostrup Research Institute | Povlsen G.K.,Glostrup Research Institute
Acta Physiologica | Year: 2011

Late cerebral ischaemia after subarachnoid haemorrhage (SAH) carries high morbidity and mortality because of reduced cerebral blood flow (CBF) and subsequent cerebral ischaemia. This is associated with upregulation of contractile receptors in cerebral artery smooth muscles via the activation of intracellular signalling. In addition, delayed cerebral ischaemia after SAH is associated with inflammation and disruption of the blood-brain barrier (BBB). This article reviews recent evidence concerning the roles of vasoconstrictor receptor upregulation, inflammation and BBB breakdown in delayed cerebral ischaemia after SAH. In addition, recent studies investigating the role of various intracellular signalling pathways in these processes and the possibilities of targeting signalling components in SAH treatment are discussed. Studies using a rat SAH model have demonstrated that cerebral arteries increase their sensitivity to endogenous agonists such as ET-1 and 5-HT by increasing their smooth muscle expression of receptors for these after SAH. This is associated with reduced CBF and neurological deficits. A number of signal transduction components mediating this receptor upregulation have been identified, including the MEK-ERK1/2 pathway. Inhibition of MEK-ERK1/2 signalling has been shown to prevent cerebrovascular receptor upregulation and normalize CBF and neurological function after SAH in rats. At the same time, in rat SAH, certain cytokines and BBB-regulating proteins are upregulated in cerebral artery smooth muscles and treatment with MEK-ERK1/2 inhibitors prevents the induction of these proteins. Thus, inhibitors of MEK-ERK1/2 signalling exert multimodal beneficial effects in SAH. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society. Source

Johansson S.,Glostrup Research Institute | Povlsen G.,Glostrup Research Institute | Edvinsson L.,Glostrup Research Institute | Edvinsson L.,Lund University
PLoS ONE | Year: 2012

Background: Global ischemic stroke is one of the most prominent consequences of cardiac arrest, since the diminished blood flow to the brain results in cell damage and sometimes permanently impaired neurological function. The post-arrest period is often characterised by cerebral hypoperfusion due to subacute hemodynamic disturbances, the pathophysiology of which are poorly understood. In two other types of stroke, focal ischemic stroke and subarachnoid hemorrhage, it has earlier been demonstrated that the expression of certain vasoconstrictor receptors is increased in cerebral arteries several days after the insult, a phenomenon that leads to increased contraction of cerebral arteries, reduced perfusion of the affected area and worsened ischemic damage. Based on these findings, the aim of the present study was to investigate if transient global cerebral ischemia is associated with upregulation of vasoconstrictive endothelin and 5-hydroxytryptamine receptors in cerebral arteries. Experimental transient forebrain ischemia of varying durations was induced in male wistar rats, followed by reperfusion for 48 hours. Neurological function was assessed daily by three different tests and cerebrovascular expression and contractile function of endothelin and 5-hydroxytryptamine receptors were evaluated by wire myography, immunohistochemistry and western blotting. Results: Transient forebrain ischemia induced neurological deficits as well as functional upregulation of vasoconstrictive ETB and 5-HT1B receptors in cerebral arteries supplying mid- and forebrain regions. No receptor upregulation was seen in arteries supplying the hindbrain. Immunohistochemical stainings and western blotting demonstrated expressional upregulation of these receptor subtypes in the mid- and forebrain arteries and confirmed that the receptors were located in the smooth muscle layer of the cerebral arteries. Conclusions: This study reveals a new pathophysiological aspect of global ischemic stroke, namely expressional upregulation of vasoconstrictor receptors in cerebral arteries two days after the insult, which might contribute to cerebral hypoperfusion and delayed neuronal damage after cardiac arrest. © 2012 Johansson et al. Source

Discover hidden collaborations