Dresden, Germany
Dresden, Germany

GlobalFoundries is a semiconductor foundry with its headquarters located in Santa Clara, California. GlobalFoundries was created by the divestiture of the manufacturing arm of Advanced Micro Devices on March 2, 2009, and expanded through the acquisition of Chartered Semiconductor on January 23, 2010. The Emirate of Abu Dhabi is the owner of the company through its subsidiary Advanced Technology Investment Company . On March 4, 2012, AMD announced they divested their final 14% stake in the company, which concluded AMD's multi-year plan to divest its manufacturing arm.The firm manufactures integrated circuits in high volume mostly for semiconductor companies such as AMD, Broadcom, Qualcomm, and STMicroelectronics. It has five 200 mm wafer fabrication plants in Singapore, and two 300 mm fabrication plants each in Germany and Singapore, as well as a new 300 mm fabrication plant in Malta, Saratoga County, New York in the United States scheduled to begin volume production in 2013.Sanjay Jha is the Chief Executive Officer of GlobalFoundries. Wikipedia.


Time filter

Source Type

An interconnect structure includes an insulator stack on an upper surface of a semiconductor substrate. The insulator stack includes a first insulator layer having at least one semiconductor device embedded therein and an etch stop layer interposed between the first insulator layer and a second insulator layer. At least one electrically conductive local contact extends through each of the second insulator layer, etch stop layer and, first insulator layer to contact the at least one semiconductor device. The interconnect structure further includes at least one first layer contact element disposed on the etch stop layer and against the at least one conductive local contact.


Patent
Ibm and Globalfoundries | Date: 2017-01-30

A gate structure straddling a plurality of semiconductor material portions is formed. Source regions and drain regions are formed in the plurality of semiconductor material portions, and a gate spacer laterally surrounding the gate structure is formed. Epitaxial active regions are formed from the source and drain regions by a selective epitaxy process. The assembly of the gate structure and the gate spacer is cut into multiple portions employing a cut mask and an etch to form multiple gate assemblies. Each gate assembly includes a gate structure portion and two disjoined gate spacer portions laterally spaced by the gate structure portion. Portions of the epitaxial active regions can be removed from around sidewalls of the gate spacers to prevent electrical shorts among the epitaxial active regions. A dielectric spacer or a dielectric liner may be employed to limit areas in which metal semiconductor alloys are formed.


Semiconductor fuses with nanowire fuse links and fabrication methods thereof are presented. The methods include, for instance: fabricating a semiconductor fuse, the semiconductor fuse including at least one nanowire fuse link, and the fabricating including: forming at least one nanowire, the at least one nanowire including a semiconductor material; and reacting the at least one nanowire with a metal to form the at least one nanowire fuse link of the semiconductor fuse, the at least one nanowire fuse link including a semiconductor-metal alloy. In another aspect, a structure is presented. The structure includes: a semiconductor fuse, the semiconductor fuse including: at least one nanowire fuse link, the at least one nanowire fuse link including a semiconductor-metal alloy.


Methods for abutting two cells with different sized diffusion regions and the resulting devices are provided. Embodiments include abutting a first cell having first drain and source diffusion regions and a second cell having second drain and source diffusion regions, larger than the first diffusion regions, by: forming a dummy gate at a boundary between the two cells; forming a continuous drain diffusion region having an upper portion crossing the dummy gate and encompassing the entire first drain diffusion region and part of the second drain diffusion region and having a lower portion beginning over the dummy gate and encompassing a remainder of the second drain diffusion region; forming a continuous source diffusion region that is the mirror image of the continuous drain diffusion region; and forming a poly-cut mask over the dummy gate between, but separated from, the continuous drain and source diffusion regions.


Patent
Globalfoundries | Date: 2017-01-30

Process of using a dummy gate as an interconnection and a method of manufacturing the same are disclosed. Embodiments include forming on a semiconductor substrate dummy gate structures at cell boundaries, each dummy gate structure including a set of sidewall spacers and a cap disposed between the sidewall spacers; removing a first sidewall spacer or at least a portion of a first cap on a first side of a first dummy gate structure and forming a first gate contact trench over the first dummy gate structure; and filling the first gate contact trench with a metal to form a first gate contact.


A method of fabricating a semiconductor device can include the following steps: (i) providing an initial sub-assembly including a trench-defining layer having a top surface; (ii) refining the initial sub-assembly into a first trench-cut intermediate sub-assembly by removing material to form an upper tier of a trench extending downward from the top surface of the trench-defining layer, the upper tier of the trench including two lateral trench surfaces and a bottom trench surface; and (iii) refining the first trench-cut intermediate sub-assembly into a second trench-cut intermediate sub-assembly by selectively removing material in a downwards direction starting from the bottom surface of the trench to form a lower tier of the trench, with the selective removal of material leaving at least a first defect blocking member in the lower tier of the trench.


Patent
Ibm and Globalfoundries | Date: 2017-02-07

A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.


An interposer structure and a method of interconnecting first and second semiconductor dies are provided. A splice interposer is attached to a top surface of a substrate through a first plurality of pillars formed on a bottom surface of the splice interposer. The first semiconductor die is attached to the top surface of a substrate through a second plurality of pillars formed on a bottom surface of the first semiconductor die. The first semiconductor die is attached to a top surface of the splice interposer through a third plurality of pillars formed on the bottom surface of the first semiconductor. The height of the second plurality of pillars is greater than the height of the third plurality of pillars. The second semiconductor die is attached to the top surface of the splice interposer through a fourth plurality of pillars formed on a bottom surface of the second semiconductor die. The first to fourth plurality of pillars and the splice interposer form interconnection and wiring between the first semiconductor die, the second semiconductor die and the substrate.


Various embodiments include methods of forming interconnect structures, and the structures formed by such methods. In one embodiment, an interconnect structure can include: a photosensitive polyimide (PSPI) layer including a pedestal portion; a controlled collapse chip connection (C4) bump overlying the pedestal portion of the PSPI layer; a solder overlying the C4 bump and contacting a side of the C4 bump; and an underfill layer abutting the pedestal portion of the PSPI and the C4 bump, wherein the underfill layer and the solder form a first interface separated from the PSPI pedestal.


A temperature change of a device on an integrated circuit chip due to self-heating and thermal coupling with other device(s) is modeled considering inefficient heat removal from the backside of the chip. To perform such modeling, ratios of an imaginary heat amount to an actual heat amount for different locations on the IC chip must be predetermined using a test integrated circuit (IC) chip. During testing, one test device at one specific location on the test IC chip is selected to function as a heat source, while at least two other test devices at other locations on the test IC chip function as temperature sensors. The heat source is biased and changes in temperature at the heat source and at the sensors are determined. These changes are used to calculate the value of the imaginary heat amount to actual heat amount ratio to be associated with the specific location.

Loading Globalfoundries collaborators
Loading Globalfoundries collaborators