Global Research and Early Development Merck Serono SA

Genève, Switzerland

Global Research and Early Development Merck Serono SA

Genève, Switzerland
SEARCH FILTERS
Time filter
Source Type

Ousson S.,Global Research and Early Development Merck Serono SA | Ousson S.,Asceneuron SA | Saric A.,Global Research and Early Development Merck Serono SA | Baguet A.,Global Research and Early Development Merck Serono SA | And 8 more authors.
Journal of Neurochemistry | Year: 2013

The molecular mechanisms governing γ-secretase cleavage specificity are not fully understood. Herein, we demonstrate that extending the transmembrane domain of the amyloid precursor protein-derived C99 substrate in proximity to the cytosolic face strongly influences γ-secretase cleavage specificity. Sequential insertion of leucines or replacement of membrane-anchoring lysines by leucines elevated the production of Aβ42, whilst lowering production of Aβ40. A single insertion or replacement was sufficient to produce this phenotype, suggesting that the helical length distal to the ε-site is a critical determinant of γ-secretase cleavage specificity. Replacing the lysine at the luminal membrane border (K28) with glutamic acid (K28E) increased Aβ37 and reduced Aβ42 production. Maintaining a positive charge with an arginine replacement, however, did not alter cleavage specificity. Using two potent and structurally distinct γ-secretase modulators (GSMs), we elucidated the contribution of K28 to the modulatory mechanism. Surprisingly, whilst lowering the potency of the non-steroidal anti-inflammatory drug-type GSM, the K28E mutation converted a heteroaryl-type GSM to an inverse GSM. This result implies the proximal lysine is critical for the GSM mechanism and pharmacology. This region is likely a major determinant for substrate binding and we speculate that modulation of substrate binding is the fundamental mechanism by which GSMs exert their action. Mutagenesis studies were conducted to explore γ-secretase cleavage specificity and modulation. Elongation of the distal juxtamembrane domain changes cleavage specificity. The K28E mutation at the proximal juxtamembrane domain changes γ-secretase cleavage specificity and modulator pharmacology. Thus, we have identified critical determinants in the proximal and distal juxtamembrane domains of the APP C99 substrate which differentially affect γ-secretase cleavage specificity and modulator pharmacology. Modulation of substrate binding could be a potential mechanism of action for γ-secretase modulators. © 2012 International Society for Neurochemistry.

Loading Global Research and Early Development Merck Serono SA collaborators
Loading Global Research and Early Development Merck Serono SA collaborators