Global Discovery Chemistry and.

Global Discovery Chemistry and.

SEARCH FILTERS
Time filter
Source Type

PubMed | Novartis, Global Discovery Chemistry and., Structural and Biophysical Chemistry, From the Divisions of Protein science and Virology Lead Discovery.
Type: Journal Article | Journal: The Journal of biological chemistry | Year: 2016

Influenza virus polymerase catalyzes the transcription of viral mRNAs by a process known as cap-snatching, where the 5-cap of cellular pre-mRNA is recognized by the PB2 subunit and cleaved 10-13 nucleotides downstream of the cap by the endonuclease PA subunit. Although this mechanism is common to both influenza A (FluA) and influenza B (FluB) viruses, FluB PB2 recognizes a wider range of cap structures including m(7)GpppGm-, m(7)GpppG-, and GpppG-RNA, whereas FluA PB2 utilizes methylated G-capped RNA specifically. Biophysical studies with isolated PB2 cap-binding domain (PB2(cap)) confirm that FluB PB2 has expanded mRNA cap recognition capability, although the affinities toward m(7)GTP are significantly reduced when compared with FluA PB2. The x-ray co-structures of the FluB PB2(cap) with bound cap analogs m(7)GTP and GTP reveal an inverted GTP binding mode that is distinct from the cognate m(7)GTP binding mode shared between FluA and FluB PB2. These results delineate the commonalities and differences in the cap-binding site between FluA and FluB PB2 and will aid structure-guided drug design efforts to identify dual inhibitors of both FluA and FluB PB2.


PubMed | From the Center for Proteomic Chemistry, Novartis and Global Discovery Chemistry and.
Type: Journal Article | Journal: The Journal of biological chemistry | Year: 2015

Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors.

Loading Global Discovery Chemistry and. collaborators
Loading Global Discovery Chemistry and. collaborators