Charlottesville, VA, United States
Charlottesville, VA, United States

Time filter

Source Type

Kiesecker J.M.,Global Conservation Lands Program | Evans J.S.,Global Conservation Lands Program | Fargione J.,North America Conservation Region | Doherty K.,Audubon Society | And 6 more authors.
PLoS ONE | Year: 2011

Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ~7,700 GW of potential wind energy available across the U.S., with ~3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ~2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation.

Saenz S.,University of Los Andes, Colombia | Walschburger T.,University of Los Andes, Colombia | Gonzalez J.C.,Northern Andes Program | Leon J.,Latin America Program | And 2 more authors.
PLoS ONE | Year: 2013

Mitigation policy and regulatory frameworks are consistent in their strong support for the mitigation hierarchy of: (1) avoiding impacts, (2) minimizing impacts, and then (3) offsetting/compensating for residual impacts. While mitigation frameworks require developers to avoid, minimize and restore biodiversity on-site before considering an offset for residual impacts, there is a lack of quantitative guidance for this decision-making process. What are the criteria for requiring impacts be avoided altogether? Here we examine how conservation planning can guide the application of the mitigation hierarchy to address this issue. In support of the Colombian government's aim to improve siting and mitigation practices for planned development, we examined five pilot projects in landscapes expected to experience significant increases in mining, petroleum and/or infrastructure development. By blending landscape-level conservation planning with application of the mitigation hierarchy, we can proactively identify where proposed development and conservation priorities would be in conflict and where impacts should be avoided. The approach we outline here has been adopted by the Colombian Ministry of Environment and Sustainable Development to guide licensing decisions, avoid piecemeal licensing, and promote mitigation decisions that maintain landscape condition. Copyright © 2013 Saenz et al.

PubMed | University of Minnesota, Global Conservation Lands Program, SIG and Dow Chemical Company
Type: Journal Article | Journal: Science advances | Year: 2016

Impact mitigation is a primary mechanism on which countries rely to reduce environmental externalities and balance development with conservation. Mitigation policies are transitioning from traditional project-by-project planning to landscape-level planning. Although this larger-scale approach is expected to provide greater conservation benefits at the lowest cost, empirical justification is still scarce. Using commercial sugarcane expansion in the Brazilian Cerrado as a case study, we apply economic and biophysical steady-state models to quantify the benefits of the Brazilian Forest Code (FC) under landscape- and property-level planning. We find that FC compliance imposes small costs to business but can generate significant long-term benefits to nature: supporting 32 (37) additional species (largely habitat specialists), storing 593,000 to 2,280,000 additional tons of carbon worth $69 million to $265 million ($ pertains to U.S. dollars), and marginally improving surface water quality. Relative to property-level compliance, we find that landscape-level compliance reduces total business costs by $19 million to $35 million per 6-year sugarcane growing cycle while often supporting more species and storing more carbon. Our results demonstrate that landscape-level mitigation provides cost-effective conservation and can be used to promote sustainable development.

Loading Global Conservation Lands Program collaborators
Loading Global Conservation Lands Program collaborators