Melbourne, Australia
Melbourne, Australia

Time filter

Source Type

Mehendale S.,National Institute of Epidemiology | Thakar M.,National Dairy Research Institute | Sahay S.,National Dairy Research Institute | Kumar M.,National Institute for Research on Tuberculosis | And 17 more authors.
PLoS ONE | Year: 2013

Study Design: A randomized, double-blind, placebo controlled phase I trial. Methods: The trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of prime-boost vaccination regimens with either 2 doses of ADVAX, a DNA vaccine containing Chinese HIV-1 subtype C env gp160, gag, pol and nef/tat genes, as a prime and 2 doses of TBC-M4, a recombinant MVA encoding Indian HIV-1 subtype C env gp160, gag, RT, rev, tat, and nef genes, as a boost in Group A or 3 doses of TBC-M4 alone in Group B participants. Out of 16 participants in each group, 12 received vaccine candidates and 4 received placebos. Results: Both vaccine regimens were found to be generally safe and well tolerated. The breadth of anti-HIV binding antibodies and the titres of anti-HIV neutralizing antibodies were significantly higher (p<0.05) in Group B volunteers at 14 days post last vaccination. Neutralizing antibodies were detected mainly against Tier-1 subtype B and C viruses. HIV-specific IFN-γ ELISPOT responses were directed mostly to Env and Gag proteins. Although the IFN-γ ELISPOT responses were infrequent after ADVAX vaccinations, the response rate was significantly higher in group A after 1st and 2nd MVA doses as compared to the responses in group B volunteers. However, the priming effect was short lasting leading to no difference in the frequency, breadth and magnitude of IFN-γELISPOT responses between the groups at 3, 6 and 9 months post-last vaccination. Conclusions: Although DNA priming resulted in enhancement of immune responses after 1st MVA boosting, the overall DNA prime MVA boost was not found to be immunologically superior to homologous MVA boosting. Trial Registration: Clinical Trial Registry CTRI/2009/091/000051. © 2013 Mehendale et al.


Omosa-Manyonyi G.,University of Nairobi | Mpendo J.,Uganda Virus Research Institute IAVI | Ruzagira E.,Medical Research Council MRC Uganda Virus Research Institute UVRI | Ruzagira E.,Research Unit on AIDS | And 24 more authors.
PLoS ONE | Year: 2015

Background: Sequential prime-boost or co-administration of HIV vaccine candidates based on an adjuvanted clade B p24, RT, Nef, p17 fusion protein (F4/AS01) plus a non-replicating adenovirus 35 expressing clade A Gag, RT, Int and Nef (Ad35-GRIN) may lead to a unique immune profile, inducing both strong T-cell and antibody responses. Methods: In a phase 1, double-blind, placebo-controlled trial, 146 healthy adult volunteers were randomized to one of four regimens: heterologous prime-boost with two doses of F4/AS01E or F4/AS01B followed by Ad35-GRIN; Ad35-GRIN followed by two doses of F4/AS01B; or three co-administrations of Ad35-GRIN and F4/AS01B. T cell and antibody responses were measured. Results: The vaccines were generally well-tolerated, and did not cause serious adverse events. The response rate, by IFN-γ ELISPOT, was greater when Ad35-GRIN was the priming vaccine and in the co-administration groups. F4/AS01 induced CD4+ T-cells expressing primarily CD40L and IL2 +/- TNF-α, while Ad35-GRIN induced predominantly CD8+ T-cells expressing IFN-γ +/- IL2 or TNF-α. Viral inhibition was induced after Ad35-GRIN vaccination, regardless of the regimen. Strong F4-specific antibody responses were induced. Immune responses persisted at least a year after the last vaccination. The complementary response profiles, characteristic of each vaccine, were both expressed after co-administration. Conclusion: Co-administration of an adjuvanted protein and an adenovirus vector showed an acceptable safety and reactogenicity profile and resulted in strong, multifunctional and complementary HIV-specific immune responses. Trial Registration: ClinicalTrials.gov NCT01264445. © 2015 Omosa-Manyonyi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Keefer M.C.,University of Rochester | Gilmour J.,Imperial College London | Hayes P.,Imperial College London | Gill D.,Imperial College London | And 21 more authors.
PLoS ONE | Year: 2012

Background: We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults. Methods: Ad35-GRIN/ENV (Ad35-GRIN and Ad35-ENV mixed in the same vial in equal proportions) or Ad35-GRIN was administered intramuscularly at 0 and 6 months. Participants were randomized to receive either vaccine or placebo (10/4 per group, respectively) within one of four dosage groups: Ad35-GRIN/ENV 2×109 (A), 2×1010 (B), 2×1011 (C), or Ad35-GRIN 1×1010 (D) viral particles. Results: No vaccine-related serious adverse event was reported. Reactogenicity events reported were dose-dependent, mostly mild or moderate, some severe in Group C volunteers, all transient and resolving spontaneously. IFN-γ ELISPOT responses to any vaccine antigen were detected in 50, 56, 70 and 90% after the first vaccination, and in 75, 100, 88 and 86% of Groups A-D vaccine recipients after the second vaccination, respectively. The median spot forming cells (SFC) per 106 PBMC to any antigen was 78-139 across Groups A-C and 158-174 in Group D, after each of the vaccinations with a maximum of 2991 SFC. Four to five HIV proteins were commonly recognized across all the groups and over multiple timepoints. CD4+ and CD8+ T-cell responses were polyfunctional. Env antibodies were detected in all Group A-C vaccinees and Gag antibodies in most vaccinees after the second immunization. Ad35 neutralizing titers remained low after the second vaccination. Conclusion/Significance: Ad35-GRIN/ENV reactogenicity was dose-related. HIV-specific cellular and humoral responses were seen in the majority of volunteers immunized with Ad35-GRIN/ENV or Ad35-GRIN and increased after the second vaccination. T-cell responses were broad and polyfunctional. Trial Registration: ClinicalTrials.gov NCT00851383. © 2012 Keefer et al.


Excler J.L.,International AIDS Vaccine Initiative | Parks C.L.,International AIDS Vaccine Initiative | Ackland J.,Global BioSolutions | Rees H.,University of Witwatersrand | And 2 more authors.
Biologicals | Year: 2010

In October 2009, The International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled '. Replicating Viral Vectors for use in AIDS Vaccines' at the AIDS Vaccine 2009 Conference in Paris. The purpose of the symposium was to gather together researchers, representatives from regulatory agencies, and vaccine developers to discuss issues related to advancement of replication-competent viral vector- based HIV vaccines into clinical trials. The meeting introduced the rationale for accelerating the development of replicating viral vectors for use as AIDS vaccines. It noted that the ."Suppl 2" recently published draft guidelines that are an important first step in providing guidance for advancing live viral vectors into clinical development. Presentations included case studies and development challenges for viral vector-based vaccine candidates. These product development challenges included cell substrates used for vaccine manufacturing, the testing needed to assess vaccine safety, conducting clinical trials with live vectors, and assessment of vaccination risk versus benefit. More in depth discussion of risk and benefit highlighted the fact that AIDS vaccine efficacy trials must be conducted in the developing world where HIV incidence is greatest and how inequities in global health dramatically influence the political and social environment in developing countries. © 2010.


Kloverpris H.N.,University of Oxford | Kloverpris H.N.,University of KwaZulu - Natal | Kloverpris H.N.,Copenhagen University | Jackson A.,Chelsea and Westminster Hospital | And 13 more authors.
PLoS ONE | Year: 2013

Background:HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping Gag peptides on autologous lymphocytes (OPAL) has proven immunogenic and effective in reducing viral loads in multiple pigtail macaque studies, warranting clinical evaluation.Methodology:We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach 'OPAL-HIV-Gag(c)'. This vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous reinfusion. Patients with undetectable HIV viral loads (<50 copies/ml plasma) on HAART received four administrations at week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups: 12 mg (n = 6), 24 mg (n = 7), 48 mg (n = 2) or matching placebo (n = 8) with 18 immunologically evaluable. T-cell immunogenicity was assessed by IFNγ ELIspot and intracellular cytokine staining (ICS).Results:The OPAL-HIV-Gag(c) peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c), 1/6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked, transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours) in OPAL-HIV-Gag(c) but not in placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P<0.001), compared to post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16).Conclusion/Significance:Despite strong immunogenicity observed in several Macaca nemestrina studies using this approach, OPAL-HIV-Gag(c) was not significantly immunogenic in humans and improved methods of generating high-frequency Gag-specific T-cell responses are required.Name of Registry:ClinicalTrials.gov, Registry number: NCT01123915, URL trial registry database: http://www.clinicaltrials.gov/ct2/results?term=OPAL-HIV-1001&Search=Search. © 2013 Kløverpris et al.


Jackson A.,Chelsea and Westminster Hospital | Kloverpris H.N.,University of Oxford | Kloverpris H.N.,Copenhagen University | Kloverpris H.N.,University of KwaZulu - Natal | And 13 more authors.
PLoS ONE | Year: 2013

Background:Preclinical studies of overlapping 15mer peptides, spanning SIV, SHIV or HIV, pulsed on autologous PBMC ex vivo have demonstrated high level, virus-specific T cell responses and viral suppression in non-human primates (NHP). Opal-HIV-Gag(c) consists of 120 synthetic 15mer peptides spanning Clade C, consensus Gag, manufactured to current good manufacturing practice; having been evaluated in a good laboratory practice toxicology study in Macaca mulatta. We evaluated the safety and preliminary immunogenicity of such peptides administered intravenously after short-duration ex vivo incubation, to HIV-positive adults on suppressive antiretroviral therapy.Methods and Findings:A first-in-human, placebo-controlled, double-blind, dose escalation study was conducted. Twenty-three patients with virus suppressed by antiretroviral therapy were enrolled in four groups 12 mg (n = 6), 24 mg (n = 6), 48 mg (n = 2) or matching placebo (n = 8). Treatment was administered intravenously after bedside enrichment of 120 mL whole blood for white cells using a closed system (Sepax S-100 device), with ex vivo peptide admixture (or diluent alone) and 37°C incubation for one hour prior to reinfusion. Patients received 4 administrations at monthly intervals followed by a 12-week observation post-treatment. Opal-HIV-Gag(c) was reasonably tolerated at doses of 12 and 24 mg. There was an increased incidence of temporally associated pyrexia, chills, and transient/self-limiting lymphopenia in Opal-HIV-Gag(c) recipients compared to placebo. The study was terminated early, after two patients were recruited to the 48 mg cohort; a serious adverse event of hypotension, tachycardia secondary to diarrhoea occurred following a single product administration. An infectious cause for the event could not be identified, leaving the possibility of immunologically mediated product reaction.Conclusions:A serious, potentially life-threatening event of hypotension led to early, precautionary termination of the study. In the absence of a clearly defined mechanism or ability to predict such occurrence, further development of Opal-HIV-Gag(c) will not be undertaken in the current form.Registration:ClinicalTrials.gov NCT01123915; EudraCT: 2008-005142-23. © 2013 Jackson et al.


Hayes P.,Imperial College London | Gilmour J.,Imperial College London | Lieven A.V.,International AIDS Vaccine Initiative | Gill D.,Imperial College London | And 16 more authors.
Clinical and Vaccine Immunology | Year: 2013

A randomized, double-blind, placebo-controlled phase I trial was conducted in 32 HIV-uninfected healthy volunteers to assess the safety and immunogenicity of 3 doses of DNA vaccine (Advax) plus 1 dose of recombinant modified vaccinia virus Ankara (MVA) (TBC-M4) or 3 doses of TBC-M4 alone (groups A and B, respectively). Both vaccine regimens were found to be safe and well tolerated. Gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay responses were detected in 1/10 (10%) individuals in group A after three Advax primes and in 9/9 individuals (100%) after the MVA boost. In group B, IFN-γ ELISPOT responses were detected in 6/12 (50%) and 7/11 (64%) individuals after the second and third MVA vaccinations, respectively. Responses to all vaccine components, but predominantly to Env, were seen. The breadth and magnitude of the T cell response and viral inhibition were greater in group A than in group B, indicating that the quality of the T-cell response was enhanced by the DNA prime. Intracellular cytokine staining indicated that the T-cell responses were polyfunctional but were skewed toward Env with a CD4+ phenotype. At 2 weeks after the last vaccination, HIV-specific antibody responses were detected in all (100%) group B and 1/11 (9.1%) group A vaccinees. Vaccinia virus-specific responses were detected in all (100%) group B and 2/11 (18.2%) group A vaccinees. In conclusion, HIV-specific T-cell responses were seen in the majority of volunteers in groups A and B but with a trend toward greater quality of the T-cell response in group A. Antibody responses were better in group B than in group A. © 2013, American Society for Microbiology.


Kloverpris Henrik H.,Statens Serum Institute | Kloverpris Henrik H.,University of Oxford | Fomsgaard A.,Statens Serum Institute | Handley A.,Medicines Development Ltd | And 3 more authors.
Journal of Immunological Methods | Year: 2010

Immunotherapies based on reinfusion of autologous cells incubated ex vivo with peptides reconstituted in toxic solvents, such as DMSO, are now performed on a routine basis. However, the toxic effects of the most common solvent used, DMSO, on T cell responses from human PBMCs, have not previously been evaluated in detail. Here, in preparation for a first-in-man human phase I vaccine trial comprising reinfusion of autologous HIV peptide-pulsed PBMCs, human PBMCs from healthy and HIV-infected donors were exposed in vitro to a range of DMSO concentrations, and for a range of time periods. Polychromatic flow cytometry was used to evaluate the influence of DMSO on functional T cell responses. We report that high concentrations of up to 10% of DMSO for 1hour do not affect the cell viability, the magnitude or the functional profile of CD4+ and CD8+ T cell responses, regardless of antigen specificity and HLA class I restriction. In contrast, >2% for >2hours compromises these responses. These data are relevant in the design of immunotherapies based on pulsing a large number of peptides onto antigen presenting cells prior to reinfusion. © 2010 Elsevier B.V.

Loading Global BioSolutions collaborators
Loading Global BioSolutions collaborators