Time filter

Source Type

Washington, DC, United States

Assad N.A.,University of New Mexico | Balmes J.,University of California at San Francisco | Balmes J.,University of California at Berkeley | Mehta S.,Global Alliance for Clean Cookstoves | And 2 more authors.
Seminars in Respiratory and Critical Care Medicine | Year: 2015

Approximately 3 billion people around the world cook and heat their homes using solid fuels in open fires and rudimentary stoves, resulting in household air pollution. Household air pollution secondary to indoor combustion of solid fuel is associated with multiple chronic obstructive pulmonary disease (COPD) outcomes. The exposure is associated with both chronic bronchitis and emphysema phenotypes of COPD as well as a distinct form of obstructive airway disease called bronchial anthracofibrosis. COPD from household air pollution differs from COPD from tobacco smoke with respect to its disproportionately greater bronchial involvement, lesser emphysematous change, greater impact on quality of life, and possibly greater oxygen desaturation and pulmonary hypertensive changes. Interventions that decrease exposure to biomass smoke may decrease the risk for incident COPD and attenuate the longitudinal decline in lung function, but more data on exposure-response relationships from well-designed longitudinal studies are needed. Copyright © 2015 by Thieme Medical Publishers, Inc.

Loo J.D.,Centers for Disease Control and Prevention | Hyseni L.,University of Liverpool | Ouda R.,Public Health Institute | Koske S.,Public Health Institute | And 7 more authors.
International Journal of Environmental Research and Public Health | Year: 2016

Over half of the world’s population uses biomass fuels; these households cook on open fires indoors, increasing their risk of adverse health effects due to household air pollution (HAP) from biomass combustion. This study evaluated six improved cookstoves (ICS) for effectiveness and acceptability in a rural community in Western Kenya. This paper describes women’s views on each ICS compared to the traditional three-stone fire. Views on stove characteristics, fuel consumption, health effects and acceptability were assessed through structured interviews and focus group discussions. Data were coded and analyzed using a thematic approach. In total, 262 interviews and 11 focus groups were conducted from 43 women. Overall, women preferred the ICS over the traditional three-stone fire for various reasons including ease of use, efficiency, fuel efficiency and perceived reduction in smoke and improved health. However, there were clear preferences for specific ICS with almost half of women preferring a Philips stove. Despite acceptance and use of ICS, women used multiple stoves to meet their daily needs. Qualitative studies are essential to field evaluations to provide insight into user perspectives and acceptability of ICS and to inform research and development of technologies that are both effective in reducing HAP and practical in use. © 2016 by the authors; licensee MDPI, Basel, Switzerland.

Johnson M.A.,Berkeley Air Monitoring Group Inc. | Chiang R.A.,Global Alliance for Clean Cookstoves
Journal of Health Communication | Year: 2015

Achieving World Health Organization air quality targets and aspirational fuel savings targets through clean cooking solutions will require high usage rates of high-performing products and low usage rates of traditional stoves. Catalyzing this shift is challenging as fuel and stove use practices associated with new technologies generally differ from those used with traditional technologies. Accompanying this shift with ventilation improvements can help further reduce exposure to emissions of health damaging pollutants. Behavior change strategies will be central to these efforts to move users to new technologies and minimize exposure to emissions. In this article, the authors show how behavior change can be linked to quantitative guidance on stove usage, household ventilation rates, and performance. The guidance provided here can help behavior change efforts in the household energy sector set and achieve quantitative goals for usage and ventilation rates. Copyright © Taylor & Francis Group, LLC.

Johnson M.A.,Berkeley Air Monitoring Group Inc. | Chiang R.A.,Global Alliance for Clean Cookstoves
Environmental Health Perspectives | Year: 2015

Background: Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings. Objectives: This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements. Methods: We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency. Results: Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance–usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1–3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7–9 hr/week). Conclusions: Moderate health gains may be achieved with various performance–usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance–usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact. © 2015, Public Health Services, US Dept of Health and Human Services. All rights reserved.

Peck M.,University of Arizona | Falk H.,Centers for Disease Control and Prevention | Meddings D.,World Health Organization | Sugerman D.,Centers for Disease Control and Prevention | And 2 more authors.
Injury Prevention | Year: 2016

Background Limited and fragmented data collection systems exist for burn injury. A global registry may lead to better injury estimates and identify risk factors. A collaborative effort involving the WHO, the Global Alliance for Clean Cookstoves, the CDC and the International Society for Burn Injuries was undertaken to simplify and standardise inpatient burn data collection. An expert panel of epidemiologists and burn care practitioners advised on the development of a new Global Burn Registry (GBR) form and online data entry system that can be expected to be used in resourceabundant or resource-limited settings. Methods International burn organisations, the CDC and the WHO solicited burn centre participation to pilot test the GBR system. The WHO and the CDC led a webinar tutorial for system implementation. Results During an 8-month period, 52 hospitals in 30 countries enrolled in the pilot and were provided the GBR instrument, guidance and a data visualisation tool. Evaluations were received from 29 hospitals (56%). Key findings Median time to upload completed forms was <10 min; physicians most commonly entered data (64%), followed by nurses (25%); layout, clarity, accuracy and relevance were all rated high; and a vast majority (85%) considered the GBR ‘highly valuable’ for prioritising, developing and monitoring burn prevention programmes. Conclusions The GBR was shown to be simple, flexible and acceptable to users. Enhanced regional and global understanding of burn epidemiology may help prioritise the selection, development and testing of primary prevention interventions for burns in resourcelimited settings. © 2016, BMJ Publishing Group. All rights reserved.

Discover hidden collaborations