Oyama, Japan
Oyama, Japan

Time filter

Source Type

An extreme ultraviolet light generation apparatus may include: a chamber; a target generation unit configured to output a target to a predetermined region inside the chamber; a focusing optical system configured to concentrate a pulse laser beam to the predetermined region; and a plurality of scattered light detectors each configured to detect scattered light from the target irradiated with the pulse laser beam. The extreme ultraviolet light generation apparatus may further include: an optical path changer configured to change an optical path of the pulse laser beam; and an optical path controller configured to control the optical path changer on a basis of results of detection by the plurality of scattered light detectors.


Patent
Gigaphoton Inc. | Date: 2016-05-10

An extreme ultraviolet light generation apparatus may include: a chamber; a target supply unit configured to output a target toward a predetermined region inside the chamber; a first gas supply unit configured to blow out gas in a first direction toward a trajectory of the target between the target supply unit and the predetermined region; and a focusing optical system configured to concentrate a pulse laser beam to the predetermined region.


Patent
Gigaphoton Inc. | Date: 2016-05-11

An extreme ultraviolet light generation apparatus may include: a chamber in which extreme ultraviolet light is generated when a target is irradiated with a laser beam inside the chamber; a target supply part configured to supply the target into the chamber; and a target collector configured to collect the target which is supplied by the target supply part but is not irradiated with the laser beam in a collection container, by receiving the target on a receiving surface having a contact angle of equal to or smaller than 90 degrees with the target.


Patent
Gigaphoton Inc. | Date: 2016-05-10

The excimer laser apparatus may include a laser chamber configured to contain gas, a pair of electrodes provided in the laser chamber, a power source unit configured to supply a pulse voltage between the pair of electrodes, a gas supply unit configured to supply gas into the laser chamber, a gas exhaust unit configured to partially exhaust gas from within the laser chamber, and a gas control unit configured to control the gas supply unit and the gas exhaust unit, where a replacement ratio of gas to be replaced from within the laser chamber increases as deterioration of the pair of electrodes progresses, the deterioration being represented by a deterioration parameter of the pair of electrodes.


Patent
Gigaphoton Inc. | Date: 2016-02-05

An example of the disclosure is a laser apparatus including a master oscillator capable of outputting a pulse laser beam, a plurality of optical amplifiers disposed on an optical path of the pulse laser beam outputted from the master oscillator and configured to sequentially amplify the pulse laser beam, an optical reflector capable of passing the pulse laser beam therethrough and reflecting a self-oscillation beam generated in one of the plurality of optical amplifiers, and an optical absorber capable of receiving and absorbing the self-oscillation beam reflected by the optical reflector.


Patent
Gigaphoton Inc. | Date: 2016-09-06

An extreme ultraviolet light generation apparatus may include: a target supply device configured to supply targets from a nozzle; a first illumination device configured to output light having a first characteristic to illuminate targets outputted from the nozzle; a second illumination device configured to output light having a second characteristic different from the first characteristic to illuminate the targets outputted from the nozzle; a first imaging device configured to photograph light reflected off the targets illuminated with the light having the first characteristic; and a second imaging device configured to photograph light reflected off the targets illuminated with the light having the second characteristic.


Patent
Gigaphoton Inc. | Date: 2016-08-18

A gas laser apparatus includes a chamber containing a laser gas, a pair of electrodes disposed within the chamber, a fan disposed within the chamber, a motor connected to a rotating shaft of the fan, and a rotating speed control unit configured to control a rotating speed of the fan based on a wear-out parameter of the pair of electrodes.


Patent
Gigaphoton Inc. | Date: 2016-09-09

A target supply device may include a tank for storing a target material, a nozzle which is connected to the tank and outputs the target material, and a gas supply section for supplying the tank with gas. The gas supply section may include a booster which is connected to a gas line, boosts the gas supplied from the gas line, and outputs the boosted gas to the tank, a pressure sensor for measuring the pressure inside the tank, and a pressure controller which adjusts the pressure of the gas to be supplied to the tank on the basis of a measurement result from the pressure sensor.


Patent
Gigaphoton Inc. | Date: 2016-10-04

An extreme ultraviolet light (EUV) generation system is configured to improve conversion efficiency of energy of a laser system to EUV energy by improving the efficiency of plasma generation. The EUV generation system includes a target generation unit configured to output a target toward a plasma generation region in a chamber. The laser system is configured to generate a first pre-pulse laser beam, a second pre-pulse laser beam, and a main pulse laser beam so that the target is irradiated with the first pre-pulse laser beam, the second pre-pulse laser beam, and the main pulse laser beam in this order. In addition, the EUV generation system includes a controller configured to control the laser system so that a fluence of the second pre-pulse laser beam is equal to or higher than 1 J/cm^(2 )and equal to or lower than a fluence of the main pulse laser beam.


Patent
Gigaphoton Inc. | Date: 2016-06-03

There is provided a laser unit that may include a master oscillator, a laser amplifier, and an adjuster. The master oscillator may be configured to output a laser light beam. The laser amplifier may be disposed in a light path of the laser light beam outputted from the master oscillator. The adjuster may be disposed in the light path of the laser light beam, and may be configured to adjust a beam cross-sectional shape of the laser light beam amplified by the laser amplifier to be a substantially circular shape. The beam cross-sectional shape may be at a beam waist of the laser light beam or in the vicinity of the beam waist of the laser light beam, and may be in a plane orthogonal to a light path axis.

Loading Gigaphoton Inc. collaborators
Loading Gigaphoton Inc. collaborators