Getty Conservation Institute

Los Angeles, CA, United States

Getty Conservation Institute

Los Angeles, CA, United States

Time filter

Source Type

Cartechini L.,CNR Institute of Molecular Science and Technologies | Vagnini M.,CNR Institute of Molecular Science and Technologies | Palmieri M.,CNR Institute of Molecular Science and Technologies | Pitzurra L.,University of Perugia | And 3 more authors.
Accounts of Chemical Research | Year: 2010

Diagnostic immunology is a powerful tool, widely used in clinical and biochemical laboratories for detecting molecules. In recent years, the technique has been adaptated to materials sciences as a result of the extensive advances achieved in immunology. Today, many companies supply custom antibodies as well as new high-performance bioprobes for virtually any use. The idea of using immunodetection in the field of conservation science is not new. This analytical methodology is, in fact, particularly attractive for investigating biopolymers in painting materials; it is highly sensitive and selective with respect to the biological source of the target molecules. Among biopolymers, proteins have been widely used in the past as painting binders, adhesives, and additives in coating layers. An accurate assessment of these materials is necessary to obtain deeper insights into an artists technique as well as to design proper restoration and conservation methods. In spite of the diagnostic potential offered by immunodetection-based techniques, some analytical drawbacks had, until recently, limited their use in routine applications in conservation science. In this Account, we highlight the most important results achieved in our research on the development of analytical methodologies based on the use of enzyme-linked immunosorbent assay (ELISA) and immuno-fluorescence microscopy (IFM) techniques for the highly sensitive and specific identification of proteins in artistic and archeological materials. ELISA and IFM offer two alternative analytical routes to this final goal: ELISA provides a fast, cost-effective, quantitative analysis of microsamples put in solution, whereas IFM combines the immunodetection of the targeted molecules with the characterization of their spatial distribution. The latter approach is of great value in the stratigraphic investigation of paintings. We discuss the limits and strengths of these methodologies in the context of the complex matrixes usually found in the investigated materials and the prolonged aging that they have undergone. Immunology is a relatively new technique in conservation science, providing a rich new field for innovation. We see two areas that are particularly ripe for future contributions. The commercial manufacture of antibodies specifically tailored for use in cultural heritage studies holds enormous potential. Moreover, the need for further refinement of detection systems in immuno-fluorescence techniques, especially the suppression of the autofluorescence background in painting materials, offers an abundance of opportunities for researchers. Immunology is a relatively new technique in conservation science, providing a rich new field for innovation. © 2010 American Chemical Society.


News Article | March 15, 2016
Site: www.rdmag.com

SAN DIEGO—Original drawings and sketches from Walt Disney Animation Studio’s more than 90-year history—from Steamboat Willie through Frozen—traveled internationally for the first time this summer. This gave conservators the rare opportunity to monitor the artwork with a new state-of-the-art sensor. A team of researchers report that they developed and used a super-sensitive artificial “nose,” customized specifically to detect pollutants before they could irreversibly damage the artwork. The researchers report on their preservation efforts at the 251st National Meeting & Exposition of the American Chemical Society (ACS). “Many pollutants that are problematic for human beings are also problematic for works of art,” says Kenneth Suslick, Ph.D. For example, pollutants can spur oxidative damage and acid degradation that, in prints or canvases, lead to color changes or decomposition. “The ability to monitor how much pollution a drawing or painting is exposed to is an important element of art preservation,” he says. However, works of art are susceptible to damage at far lower pollutant levels than what’s considered acceptable for humans. “The high sensitivity of artists’ materials makes a lot of sense for two reasons,” explains Suslick, who is at the University of Illinois at Urbana-Champaign. “Human beings are capable of healing, which, of course, works of art cannot do. Moreover, human beings have finite lifetimes, whereas ideally works of art should last for future generations.” To protect valuable works of art from these effects, conservators enclose vulnerable pieces in sealed display cases. But even then, some artists’ materials may “exhale” reactive compounds that accumulate in the cases and damage the art. To counter the accumulation of pollutants, conservators often hide sorbent materials inside display cases that scrub potentially damaging compounds from the enclosed environment. But it is difficult to know precisely when to replace the sorbents. Suslick, a self-proclaimed “museum hound,” figured he might have an answer. He had already invented an optoelectronic nose—an array of dyes that change color when exposed to various compounds. But it is used largely for biomedical purposes, and it can’t sniff out the low concentrations of pollutants that damage works of art. To redesign the nose with the aim of protecting artwork, he approached scientists at the Getty Conservation Institute (GCI), a private non-profit institution in Los Angeles that works internationally to advance art conservation practice. He proposed that his team devise a sensor several hundred times more sensitive than existing devices used for cultural heritage research. The collaboration took off, and the scientists built a keener nose. At the time, GCI was involved in a research project with the Walt Disney Animation Research Library to investigate the impact of storage environment on their animation cels, which are transparent sheets that artists drew or painted on before computer animation was developed. Such research ultimately could help extend the life of this important collection. The new sensors would monitor levels of acetic acid and other compounds that emanate from these sheets. Before the exhibit, “Drawn from Life: The Art of Disney Animation Studios,” hit the road on tour, Suslick recommended placing the sensors in discrete places to monitor the pollution levels both inside and outside of the sealed and framed artworks. If the sensors indicated pollution levels inside the sealed frames were rising, conservators traveling with the Disney exhibit would know to replace the sorbents. An initial analysis of sensor data showed that the sorbents were effective. Suslick says he expects to continue expanding the sensors’ applications in the field of cultural heritage. Collaborators in the project include Maria LaGasse, a graduate student in Suslick’s lab; Kristen McCormick, art exhibitions and conservation manager at the Walt Disney Animation Research Library; Herant Khanjian, assistant scientist; and Michael Schilling, senior scientist at the Getty Conservation Institute. Suslick acknowledges funding from the National Science Foundation. The Walt Disney Company provided funding to support the GCI research on animation cels.


The researchers report on their preservation efforts at the 251st National Meeting & Exposition of the American Chemical Society (ACS). "Many pollutants that are problematic for human beings are also problematic for works of art," says Kenneth Suslick, Ph.D. For example, pollutants can spur oxidative damage and acid degradation that, in prints or canvases, lead to color changes or decomposition. "The ability to monitor how much pollution a drawing or painting is exposed to is an important element of art preservation," he says. However, works of art are susceptible to damage at far lower pollutant levels than what's considered acceptable for humans. "The high sensitivity of artists' materials makes a lot of sense for two reasons," explains Suslick, who is at the University of Illinois at Urbana-Champaign. "Human beings are capable of healing, which, of course, works of art cannot do. Moreover, human beings have finite lifetimes, whereas ideally works of art should last for future generations." To protect valuable works of art from these effects, conservators enclose vulnerable pieces in sealed display cases. But even then, some artists' materials may "exhale" reactive compounds that accumulate in the cases and damage the art. To counter the accumulation of pollutants, conservators often hide sorbent materials inside display cases that scrub potentially damaging compounds from the enclosed environment. But it is difficult to know precisely when to replace the sorbents. Suslick, a self-proclaimed "museum hound," figured he might have an answer. He had already invented an optoelectronic nose—an array of dyes that change color when exposed to various compounds. But it is used largely for biomedical purposes, and it can't sniff out the low concentrations of pollutants that damage works of art. To redesign the nose with the aim of protecting artwork, he approached scientists at the Getty Conservation Institute (GCI), a private non-profit institution in Los Angeles that works internationally to advance art conservation practice. He proposed that his team devise a sensor several hundred times more sensitive than existing devices used for cultural heritage research. The collaboration took off, and the scientists built a keener nose. At the time, GCI was involved in a research project with the Walt Disney Animation Research Library to investigate the impact of storage environment on their animation cels, which are transparent sheets that artists drew or painted on before computer animation was developed. Such research ultimately could help extend the life of this important collection. The new sensors would monitor levels of acetic acid and other compounds that emanate from these sheets. Before the exhibit, "Drawn from Life: The Art of Disney Animation Studios," hit the road on tour, Suslick recommended placing the sensors in discrete places to monitor the pollution levels both inside and outside of the sealed and framed artworks. If the sensors indicated pollution levels inside the sealed frames were rising, conservators traveling with the Disney exhibit would know to replace the sorbents. An initial analysis of sensor data showed that the sorbents were effective. Suslick says he expects to continue expanding the sensors' applications in the field of cultural heritage. Collaborators in the project include Maria LaGasse, a graduate student in Suslick's lab; Kristen McCormick, art exhibitions and conservation manager at the Walt Disney Animation Research Library; Herant Khanjian, assistant scientist; and Michael Schilling, senior scientist at the Getty Conservation Institute. Explore further: Safe journey for works of art More information: Colorimetric Sensor Arrays for Monitoring Pollutant Exposure of Artwork, the 251st National Meeting & Exposition of the American Chemical Society (ACS), 2016.


That's the power of a growing collaboration between the Cantor Arts Center's Art + Science Learning Lab, art and science faculty, and the Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory. Having a facility like SSRL just up the hill from the Cantor's conservation lab lends a unique opportunity for students to probe cultural mysteries with advanced scientific tools, says Susan Roberts-Manganelli, director of the Learning Lab. About two years ago, she started a fellowship for science students interested in studying art conservation. She works closely with SSRL scientific staff to mentor students bringing delicate, valuable art objects to SLAC in search of discoveries that benefit art and science. "We can do a lot of testing here at the Cantor," Roberts-Manganelli says. "But some studies need more robust collaboration and more powerful X-rays to actually get answers to our questions." One such study, done by Kevin Chow, BS '13, when he was a senior in collaboration with Stanford, SLAC and the Getty Conservation Institute, took a deeper look at the techniques of the ancient Greek potters, which are difficult to reproduce and not entirely understood. Using a technique called synchrotron X-ray fluorescence, the team was able to uncover surprising steps in the production process that challenge the conventional understanding. "Under what they thought was a single coat, they found other instances of painting that the naked eye could not see," says Chow's advisor Jody Maxmin, associate professor of art and art history and of classics. "It was thrilling to learn that a very humble vase—hundreds of these were produced for the Festival of Athena every four years—shows certain standards of aesthetic excellence. The artist invested more in his work than we had given him credit for." Such collaborations spark scientific innovation as well. Well-conserved art objects allow researchers to look at uniquely complex materials of a certain age that generate intriguing chemistry questions and require new techniques, says SLAC staff scientist Apurva Mehta, who is also an affiliated faculty member at the Stanford Archaeology Center. "We had to find a way to see all layers of the Greek pot in detail, which is something we want to do for other materials that might be used in batteries or electronics." For Maxmin, seeing science students step boldly into art history is inspiring. So is watching her colleagues learn things in fields not their own. "We are complicating the issues, and that's good," she says. "By looking across disciplines we are enabling unconventional friendships and discoveries." Roberts-Manganelli concurs: "You can't do science, art history or conservation in isolation. We all thought we could at one time, but now we realize we are stronger and better as a group." Explore further: Deciphering the elements of iconic pottery


Lluveras-Tenorio A.,University of Pisa | Mazurek J.,Getty Conservation Institute | Restivo A.,University of Pisa | Colombini M.P.,University of Pisa | Bonaduce I.,University of Pisa
PLoS ONE | Year: 2012

This paper describes a method for reliably identifying saccharide materials in paintings. Since the 3rd millennium B.C., polysaccharide materials such as plant gums, sugar, flour, and honey were used as binding media and sizing agents in paintings, illuminated manuscripts, and polychrome objects. Although it has been reported that plant gums have a stable composition, their identification in paint samples is often doubtful and rarely discussed. Our research was carried out independently at two different laboratories: the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). It was shown in a previous stage of this research that the two methods give highly comparable data when analysing both reference paint samples and paint layers from art objects, thus the combined data was used to build a large database. In this study, the simultaneous presence of proteinaceous binders and pigments in fresh and artificially aged paint replicas was investigated, and it highlighted how these can affect the sugar profile of arabic, tragacanth, and fruit tree gums. The environmental contamination due to sugars from various plant tissues is also discussed. The results allowed the development of a new model for the reliable identification of saccharide binders in paintings based on the evaluation of markers that are stable to ageing and unaffected by pigments. This new model was applied to the sugar profiles obtained from the analysis of a large number of samples from murals, easel paintings, manuscripts, and polychrome objects from different geographical areas and dating from the 13th century BC to the 20th century AD, thus demonstrating its reliability. © 2012 Lluveras-Tenorio et al.


Boersma F.,Getty Conservation Institute
Journal of the Institute of Conservation | Year: 2016

This article revisits our concept of preventive conservation and how we define and practise it given the context of those present day challenges to both environmental and financial sustainability. In an attempt to get a better understanding of the role, scope and position of preventive conservation within the conservation profession, the author explores how the concept was first introduced within professional associations, and how it has subsequently found its way into conservation education. A snapshot of the development of preventive conservation in the job market in the English-speaking world (specifically in the UK and the US) over the last two decades was created. It is concluded that even though preventive conservation is now integrated into the profession, the opportunities for conservators to specialise in preventive conservation are limited. The current debate on sustainability demands conservators rise to the challenge and actively claim their role as a key stakeholder in decision making, creating the need and opportunities for specialised preventive conservators.


Claudia N.,Getty Conservation Institute | Cancino B.,Getty Conservation Institute
Advanced Materials Research | Year: 2010

The Pisco earthquake of August 15, 2007 resulted in 519 deaths and 1366 injured, with a total of 650,000 people affected and 80,000 dwellings damaged. Preliminary reports indicated that significant earthen sites were damaged. A few months after the earthquake a rapid assessment to better understand the failure of the affected sites was performed by a multidisciplinary team convened by the Getty Conservation Institute (GCI) in response to a request from the Instituto Nacional de Cultura del Perú (INC). This paper presents the highlights of that evaluation and its implications for the future design and retrofit of earthen buildings. © (2010) Trans Tech Publications, Switzerland.


Schilling M.,Getty Conservation Institute | Bouchard M.,Getty Conservation Institute | Khanjian H.,Getty Conservation Institute | Learner T.,Getty Conservation Institute | And 2 more authors.
Accounts of Chemical Research | Year: 2010

Cellulose acetate, developed about 100 years ago as a versatile, semisynthetic plastic material, is used in a variety of applications and is perhaps best known as the basis of photographic film stock. Objects made wholly or partly from cellulose acetate are an important part of modern and contemporary cultural heritage, particularly in museum collections. Given the potential instability of the material, however, it is imperative to understand the aging mechanisms and deterioration pathways of cellulose ester plastics to mitigate decomposition and formulate guidelines for storage, exhibition, and conservation. One important aspect of this process is the ability to fully characterize the plastic, because variations in composition affect its aging properties and ultimate stability. In this Account, we assess the potential of a range of analytical techniques for plastics made from cellulose acetate, cellulose propionate, and cellulose butyrate. Comprehensive characterization of cellulose ester plastics is best achieved by applying several complementary analytical techniques. Fourier-transform IR (FTIR) and Raman spectroscopy provide rapid means for basic characterization of plastic objects, which can be useful for quick, noninvasive screening of museum collections with portable instruments. Pyrolysis GC/MS is capable of differentiating the main types of cellulose ester polymers but also permits a richly detailed compositional analysis of additives. Thermal analysis techniques provide a wealth of compositional information and thermal behavior. Thermogravimetry (TG) allows for quantitative analysis of thermally stable volatile additives, and weight-difference curves offer a novel means for assessing oxidative stability. The mechanical response to temperature, such as the glass transition, can be measured with dynamic mechanical analysis (DMA), but results from other thermal analysis techniques such as TG, differential scanning calorimetry (DSC), and dynamic load thermomechanical analysis (DLTMA) are often required to more accurately interpret the results. The analytical results from this study form the basis for in-depth studies of works of art fabricated from cellulose acetate. These objects, which are particularly at risk when stored in tightly sealed containers (as is often the case with photographic film), warrant particular attention for conservation given their susceptibility toward sudden onset of deterioration. © 2010 American Chemical Society.


Michiels T.L.G.,Getty Conservation Institute
International Journal of Architectural Heritage | Year: 2015

This article presents a comprehensive overview of the techniques available for the seismic retrofitting of adobe buildings. It analyzes these techniques viability from a structural engineering standpoint and evaluates their suitability in the context of historic preservation. Analysis was based on an exhaustive review of studies addressing retrofitting techniques of earthen structures, as well as consultation with field experts. The guiding principles of conservation relating to the structural reinforcement of monuments were taken into account. Traditional techniques that enhance the stability of the building, such as wooden ring beams, wooden ties interconnecting parallel walls, corner keys, and the addition of buttresses were found to be effective solutions since they employ compatible and low-cost materials such as earth and wood. When these techniques prove insufficient, minimally invasive measures such as introducing a plywood diaphragm, horizontal steel rods, a geomesh covered with mud rendering or a strapping system can be appropriate. Copyright © 2014, The J. Paul Getty Trust.


Berns R.S.,Getty Conservation Institute
Color Research and Application | Year: 2011

When displaying art, several criteria must be balanced when designing illumination including the artist's intention, damage, energy efficiency, viewing experience and understanding, and for commercial galleries and sales. The most common lighting for art includes natural daylight and incandescent spotlights. Neither source is optimal for all criteria; thus there is considerable interest in the use of white-light light-emitting diode (LED) lighting. A feasibility study was conducted to address two questions. First, was it possible to design a three-primary LED source that yielded the same color rendering as common museum lighting? Second, could one design the lighting to achieve specific color appearance attributes? Three-primary lights using a Gaussian function were optimized matching the chromaticity of D65 and minimizing color differences for a set of acrylic dispersion paints. The optimal wavelengths depended on bandwidth. Lights were also optimized that either maximized or minimized average chroma. A set of real LEDs was selected that produced similar results when evaluated computationally. A source that increases chroma may be useful when used to illuminate works of art with high light sensitivity: very low illuminances are necessary and such a source will compensate for the reduction of colorfulness and visual clarity. A source that decreases chroma may be used to render art in similar fashion to low-light conditions such as churches and caves. In general, white LED lighting is advantageous for art conservation because they do not emit UV and IR radiation and their visible radiation is reduced when compared with their continuous spectrum equivalent. © 2010 Wiley Periodicals, Inc.

Loading Getty Conservation Institute collaborators
Loading Getty Conservation Institute collaborators