Entity

Time filter

Source Type

Castanet-Tolosan, France

Allais-Bonnet A.,French National Institute for Agricultural Research | Grohs C.,French National Institute for Agricultural Research | Medugorac I.,Ludwig Maximilians University of Munich | Krebs S.,Ludwig Maximilians University of Munich | And 42 more authors.
PLoS ONE | Year: 2013

Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae. © 2013 Allais-Bonnet et al. Source


Capitan A.,French National Institute for Agricultural Research | Allais-Bonnet A.,CNRS Developmental Biology Laboratory | Pinton A.,French National Institute for Agricultural Research | Marquant-Le Guienne B.,UNCEIA | And 35 more authors.
PLoS ONE | Year: 2012

Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation. © 2012 Capitan et al. Source

Discover hidden collaborations