Entity

Time filter

Source Type

Rostock, Germany

Lessner G.,Gertrudenstrasse | Schmitt O.,Gertrudenstrasse | Haas S.J.-P.,Gertrudenstrasse | Mikkat S.,Proteome Center Rostock | And 3 more authors.
Journal of Proteome Research | Year: 2010

Parkinson's disease is a multifactorial, neurodegenerative disease where etiopathogenetic mechanisms are not fully understood. Animal models like the neurotoxic 6-OHDA-hemiparkinsonian rat model are used for standardized experiments. Here, we analyzed proteome changes of the striatum three months after 6-OHDA lesions of the nigral dopaminergic cell population. Striata were removed and proteins were separated by 2DE followed by differential spot analysis. Proteins in spots were identified by MALDI-TOF-MS. Most up-regulations of proteins were concerning energy metabolism in mitochondria. Proteins of calcium homeostasis like annexin A3, annexin A7, calbindin, calmodulin, calreticulin, and reticulocalbin 1 also were differentially regulated. Moreover, proteins involved in antioxidative mechanisms like superoxide dismutase, protein disulfide isomerase 1 and 3, N(G),N(G)-dimethylarginindimethyl- aminotransferase 2, and thioredoxin-dependent peroxide reductase were up-regulated. Interestingly, most cytoskeletal proteins belonging to the axon cytoskeleton and synapse were up-regulated pointing to long-distance axon remodeling. In addition, transcription factors, proteins of nucleic acid metabolism, chaperones, and degrading proteins (UCHL1) were up-regulated as well. In conclusion, the neurotoxin-induced proteome alterations indicate vivid long-distance remodeling processes of dendrites, axons, and synapses that are still ongoing even three months after perturbation, indicating a high plasticity and regeneration potential in the adult rat brain. © 2010 American Chemical Society. Source

Discover hidden collaborations