German Cancer Research Center

Heidelberg, Germany

German Cancer Research Center

Heidelberg, Germany

The German Cancer Research Center , is a national cancer research center based in Heidelberg, Germany. It is a member of the Helmholtz Association of German Research Centres, the largest scientific organization in Germany. Wikipedia.


Time filter

Source Type

Patent
German Cancer Research Center | Date: 2017-04-12

A fluorescence microscope instrument (1) includes a light source (2) providing light (3) to be directed to a sample (4); a detector (5) detecting fluorescence light (5) emitted out of the sample (4); an objective (7) focusing the light (3) from the light source (2) into a focal area within the sample (4) and collecting the fluorescence light (6) emitted out of the focal area to be detected by the detector (5); and a beam path separator (9) arranged in a beam path of the light (3) from the light source (2) between the light source (2) and the objective (7) and in a beam path of the fluorescence light (6) between the objective (7) and the detector (5). Wavelengths of the light (3) to be directed to the sample (4) and of the light (6) to be detected by the detector fall into a range of wavelengths extending from a low end wavelength over at least 20 % of the low end wavelength. The beam path separator (9) separates the beam path of the fluorescence light (6) from the beam path of the light (3) from the light source (2) in that it is transferable between a first state in which it is transparent for light of any wavelength falling in the range of wavelengths and coming along the beam path of the light (3) from the light source (2), and a second state in which it is transparent for light of any wavelength falling in the range of wavelengths and coming along the beam path of the fluorescence light (6) from the sample (4).


Patent
German Cancer Research Center and University of Heidelberg | Date: 2016-08-25

The present invention relates to a recombinant virus of the family Paramyxoviridae, comprising at least one expressible polynucleotide encoding a multispecific binding polypeptide, said multispecific binding polypeptide comprising a first binding domain binding to a surface molecule of an immune cell with antitumor activity, preferably a lymphocyte, more preferably a T cell or a dendritic cell, and a second binding domain binding to a tumor-associated antigen; to a polynucleotide encoding the same, and to a kit comprising the same. Moreover, the present invention relates to a method for treating cancer in a subject afflicted with cancer, comprising contacting said subject with a recombinant virus of the family Paramyxoviridae of the invention, and thereby, treating cancer in a subject afflicted with cancer.


Patent
German Cancer Research Center and Queen Mary, University of London | Date: 2016-12-21

The present invention pertains to the field of cancer diagnosis. Specifically, it relates to a method for diagnosing pancreas cancer in a subject comprising the steps of determining in a sample of a subject suspected to suffer from pancreas cancer the amount of at least one biomarker selected from the biomarkers shown in Table 1 and comparing the said amount of the at least one biomarker with a reference, whereby pancreas cancer is to be diagnosed. The present invention also contemplates a method for identifying whether a subject is in need of a pancreas cancer therapy comprising the steps of the aforementioned methods and the further step of identifying a subject in need of a pancreas cancer therapy if said subject is to be diagnosed to suffer from pancreas cancer. Contemplated are, furthermore, diagnostic devices and kits for carrying out said methods.


Patent
German Cancer Research Center | Date: 2017-06-28

A compound, which isa) a tetrahydrotriazine derivative of the formula (I),orb) a coumarin derivative of the formula (II),is useful in a therapeutical method for inhibiting autophagy in a cell and for the treatment of cancer.


Patent
German Cancer Research Center | Date: 2017-02-10

The present invention relates to the finding that Syndecans (Sdc) are receptors of Rspondin-2 (Rspo2) and Rspondin-3 (Rspo3). Thus, the present invention relates to the identification of Rspo2, Rspo3 and/or Sdc activity modulators by determining if a test compound has the ability to modulate the binding of an Rspo2 and/or Rspo3 polypeptide to an Sdc polypeptide. Further, the invention refers to novel uses for antagonists of Rspo2 and/or Rspo3 in the treatment of Sdc-associated disorders and for Sdc antagonists in the treatment of Rspo2- and/or Rspo3-associated disorders.


Described are HCBI (Healthy Cattle Blood Isolate), MSBI (Multiple Sclerosis Brain Isolate), MSSI (Multiple Sclerosis Serum Isolate) and CMI (Cow Milk Isolate) nucleotide sequences as well as probes and primers comprising part of said nucleotide sequences and antibodies against polypeptides encoded by said nucleotide sequences. Said compounds are useful as early markers for the future development of cancer and diseases of the CNS (Multiple sclerosis MS, Prion-linked diseases, amyotrophic lateral sclerosis, transmissible spongiforme encephalitis, Parkinsons disease, Alzheimer disease) and should represent targets for treatment and prevention.


Described are HCBI (Healthy Cattle Blood Isolate), MSBI (Multiple Sclerosis Brain Isolate), MSSI (Multiple Sclerosis Serum Isolate) and CMI (Cow Milk Isolate) nucleotide sequences as well as probes and primers comprising part of said nucleotide sequences and antibodies against polypeptides encoded by said nucleotide sequences. Said compounds are useful as early markers for the future development of cancer and diseases of the CNS (Multiple sclerosis MS, Prion-linked diseases, amyotrophic lateral sclerosis, transmissible spongiforme encephalitis, Parkinsons disease, Alzheimer disease) and should represent targets for treatment and prevention.


Patent
German Cancer Research Center | Date: 2017-07-19

The present invention provides a novel PSMA binding antibody termed 10B3 and pharmaceutical and diagnostic uses of the antibody 10B3. The PSMA antibody 10B3 does not cross-compete with the state of the art PMSA binding antibody J591 and has a reduced induction of antigen shift compared to J591 and a unique reactivity with squamous cell carcinoma (SCC) cells of different origin.


Patent
Faulstich and German Cancer Research Center | Date: 2017-07-19

The invention relates to tumour therapy. In one aspect, the present invention relates to conjugates of a toxin and a target-binding moiety, e.g. an antibody, which are useful in the treatment of cancer. In particular, the toxin is an amatoxin, and the target-binding moiety is preferably directed against tumour-associated antigens. In particular, the amatoxin is conjugated to the antibody by linker moieties. In particular the linker moieties are covalently bound to functional groups located in positions of the amatoxin proved as preferred positions for the attachment of linkers with respect to optimum antitumor activity. In a further aspect the invention relates to pharmaceutical compositions comprising such target-binding moiety toxin conjugates and to the use of such target-binding moiety toxin conjugates for the preparation of such pharmaceutical compositions. The target-binding moiety toxin conjugates and pharmaceutical compositions of the invention are useful for the treatment of cancer.


The present invention relates to nucleic acids encoding the novel parvoviral protein assembly activating protein S(AAP), the encoded polypeptides, methods of producing the polypeptides, antibodies specific for AAP, the use of the nucleic acids for the preparation of the polypeptides, the use of the nucleic acids or the polypeptides for the preparation of the parvoviral particle and methods of producing parvoviral particles essentially consisting of VP3 by providing in addition to the coding sequence of the parvoviral structural protein VP3 a sequence fragment Z/a nucleic acid encoding AAP in the cell and expressing VP3 and fragment Z under control of a rep-independent promoter. Furthermore, the present invention relates to parvoviral particles essentially consisting of VP3 and/or obtainable by the above method as well as expression cassettes comprising (i) a heterologous promoter and (ii) VP3 coding sequence and/or fragment Z. The present invention further relates to a medicament, particularly a vaccine, comprising the parvoviral particles or expression cassettes and their use.

Loading German Cancer Research Center collaborators
Loading German Cancer Research Center collaborators