Time filter

Source Type

Neu Isenburg, Germany

Lambertini M.,U.O. Oncologia Medica 2 | Ceppi M.,Unit of Clinical Epidemiology | Poggio F.,U.O. Oncologia Medica 2 | Peccatori F.A.,Italian National Cancer Institute | And 8 more authors.
Annals of Oncology | Year: 2015

Background: The role of temporary ovarian suppression with luteinizing hormone-releasing hormone agonists (LHRHa) in the prevention of chemotherapy-induced premature ovarian failure (POF) is still controversial. Our meta-analysis of randomized, controlled trials (RCTs) investigates whether the use of LHRHa during chemotherapy in premenopausal breast cancer patients reduces treatment-related POF rate, increases pregnancy rate, and impacts disease-free survival (DFS). Methods: A literature search using PubMed, Embase, and the Cochrane Library, and the proceedings of major conferences, was conducted up to 30 April 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) for POF (i.e. POF by study definition, and POF defined as amenorrhea 1 year after chemotherapy completion) and for patients with pregnancy, as well hazard ratios (HRs) and 95% CI for DFS, were calculated for each trial. Pooled analysis was carried out using the fixed- and random-effects models. Results: A total of 12 RCTs were eligible including 1231 breast cancer patients. The use of LHRHa was associated with a significant reduced risk of POF (OR 0.36, 95% CI 0.23-0.57; P < 0.001), yet with significant heterogeneity (I2 = 47.1%, Pheterogeneity = 0.026). In eight studies reporting amenorrhea rates 1 year after chemotherapy completion, the addition of LHRHa reduced the risk of POF (OR 0.55, 95% CI 0.41-0.73, P < 0.001) without heterogeneity (I2 = 0.0%, Pheterogeneity = 0.936). In five studies reporting pregnancies, more patients treated with LHRHa achieved pregnancy (33 versus 19 women; OR 1.83, 95% CI 1.02-3.28, P = 0.041; I2 = 0.0%, Pheterogeneity = 0.629). In three studies reporting DFS, no difference was observed (HR 1.00, 95% CI 0.49-2.04, P = 0.939; I2 = 68.0%, Pheterogeneity = 0.044). Conclusion: Temporary ovarian suppression with LHRHa in young breast cancer patients is associated with a reduced risk of chemotherapy-induced POF and seems to increase the pregnancy rate, without an apparent negative consequence on prognosis. © 2015 The Author.

Budczies J.,Charite University Hospital | Budczies J.,Berlin Partner | Pfarr N.,Berlin Partner | Pfarr N.,University of Heidelberg | And 20 more authors.
Oncotarget | Year: 2016

Recently, it has been demonstrated that calling of copy number alterations (CNAs) from amplicon sequencing (AS) data is feasible. Most approaches, however, require non-tumor (germline) DNA for data normalization. Here, we present the method Ioncopy for CNA detection which requires no normal controls and includes a significance assessment for each detected alteration. Ioncopy was evaluated in a cohort of 184 clinically annotated breast carcinomas. A total number of 252 amplifications were detected, of which 183 (72.6%) could be validated by a call of an additional amplicon interrogating the same gene. Moreover, a total number of 33 deletions were found, whereof 27 (81.8%) could be validated. Analyzing the 16 most frequently amplified genes, validation rates of over 89% could be achieved for 11 of these genes. 11 of the top 16 genes showed significant overexpression in the amplified tumors. 89.5% of the HER2-amplified tumors were GRB7 and STARD3 co-amplified, whereas 68.4% of the HER2-amplified tumors had additional MED1 amplifications. Correlations between CNAs measured by amplicons in HER2 exons 19, 20 and 21 were strong (all R > 0.93). AS based detection of HER2 amplifications had a sensitivity of 90.0% and a specificity of 98.8% compared to the gold standard of HER2 immunohistochemistry combined with in situ hybridization. In summary, we developed and validated a novel method for detection and significance assessment of CNAs in amplicon sequencing data. Using Ioncopy, AS offers a straightforward and efficient approach to simultaneously analyze gene amplifications and gene deletions together with simple somatic mutations in a single assay.

Discover hidden collaborations