Time filter

Source Type

Day J.M.D.,Geosciences Research Division Scripps Institution of Oceanography La Jolla | Corder C.A.,Geosciences Research Division Scripps Institution of Oceanography La Jolla | Rumble D.,Carnegie Institution of Washington | Assayag N.,University Paris Diderot | And 2 more authors.
Meteoritics and Planetary Science | Year: 2015

Olivine-dominated (70-80 modal %) achondrite meteorite Lewis Cliff (LEW) 88763 originated from metamorphism and limited partial melting of a FeO-rich parent body. The meteorite experienced some alteration on Earth, evident from subchondritic Re/Os, and redistribution of rhenium within the sample. LEW 88763 is texturally similar to winonaites, has a Δ17O value of -1.19 ± 0.10‰, and low bulk-rock Mg/(Mg+Fe) (0.39), similar to the FeO-rich cumulate achondrite Northwest Africa (NWA) 6693. The similar bulk-rock major-, minor-, and trace-element abundances of LEW 88763, relative to some carbonaceous chondrites, including ratios of Pd/Os, Pt/Os, Ir/Os, and 187Os/188Os (0.1262), implies a FeO- and volatile-rich precursor composition. Lack of fractionation of the rare earth elements, but a factor of approximately two lower highly siderophile element abundances in LEW 88763, compared with chondrites, implies limited loss of Fe-Ni-S melts during metamorphism and anatexis. These results support the generation of high Fe/Mg, sulfide, and/or metal-rich partial melts from FeO-rich parent bodies during partial melting. In detail, however, LEW 88763 cannot be a parent composition to any other meteorite sample, due to highly limited silicate melt loss (0 to <<5%). As such, LEW 88763 represents the least-modified FeO-rich achondrite source composition recognized to date and is distinct from all other meteorites. LEW 88763 should be reclassified as an anomalous achondrite that experienced limited Fe,Ni-FeS melt loss. Lewis Cliff 88763, combined with a growing collection of FeO-rich meteorites, such as brachinites, brachinite-like achondrites, the Graves Nunataks (GRA) 06128/9 meteorites, NWA 6693, and Tafassasset, has important implications for understanding the initiation of planetary differentiation. Specifically, regardless of precursor compositions, partial melting and differentiation processes appear to be similar on asteroidal bodies spanning a range of initial oxidation states and volatile contents. © The Meteoritical Society, 2015.


Day J.M.,Geosciences Research Division Scripps Institution of Oceanography La Jolla | Waters C.L.,Geosciences Research Division Scripps Institution of Oceanography La Jolla | Schaefer B.F.,Macquarie University | Walker R.J.,University of Maryland College Park | Turner S.,Macquarie University
Geostandards and Geoanalytical Research | Year: 2015

Properly combining highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data, obtained by isotope dilution, with corresponding 187Os/188Os and 186Os/188Os measurements of rocks requires efficient digestion of finely-ground powders and complete spike-sample equilibration. Yet, because of the nature of commonly used methods for separating Os from a rock matrix, hydrofluoric acid (HF) is typically not used in such digestions. Consequently, some silicates are not completely dissolved, and HSE residing within these silicates may not be fully accessed. Consistent with this, some recent studies of basaltic reference materials (RMs) have concluded that an HF-desilicification procedure is required to fully access the HSE (Ishikawa et al. (2014) Chemical Geology, 384, 27-46; Li et al. (2015) Geostandards and Geoanalytical Research, 39, 17-30). Highly siderophile element abundance and Os isotope studies of intraplate basalts typically target samples with a range of MgO contents (< 8 to > 18% m/m, or as mass fractions, < 8 to > 18 g per 100 g), in contrast to the lower MgO mass fractions (< 10 g per 100 g) of basalt and diabase RMs (i.e., BIR-1, BHVO-2, TDB-1). To investigate the effect of HF-desilicification on intraplate basalts, experiments were performed on finely ground Azores basalts (8.1-17 g per 100 g MgO) using a 'standard acid digestion' (2:1 mixture of concentrated HNO3 and HCl), and a standard acid digestion, followed by HF-desilicification. No systematic trends in HSE abundances were observed between data obtained by standard acid digestion and HF-desilicification. Desilicification procedures using HF do not improve liberation of the HSE from Azores basalts, or some RMs (e.g., WPR-1). We conclude that HF-desilicification procedures are useful for obtaining total HSE contents of some young lavas, but this type of procedure is not recommended for studies where Re-Pt-Os chronological information is desired. The collateral effect of a standard acid digestion to liberate Os, followed by HF-desilicification to obtain Re and Pt abundances in samples, is that the measured Re/Os and Pt/Os may not correspond with measured 187Os/188Os or 186Os/188Os. © 2015 International Association of Geoanalysts.

Loading Geosciences Research Division Scripps Institution of Oceanography La Jolla collaborators
Loading Geosciences Research Division Scripps Institution of Oceanography La Jolla collaborators