Time filter

Source Type

Gomes M.E.P.,UTAD | Gomes M.E.P.,Geosciences Center | Neves L.J.P.F.,University of Coimbra | Coelho F.,UTAD | And 3 more authors.
Environmental Earth Sciences | Year: 2011

Radon concentration was evaluated in dwellings of the urban area of Vila Real (Northern Portugal). The area is mainly composed of Hercynian granites and Cambrian metasediments, and CR-39 passive detectors (n = 112) were used for the purpose. The results obtained in winter conditions suggest that the most productive geological unit is the Hercynian granite G1 (geometric mean of 364 Bq/m3), while Cambrian metasediments of the Douro Group show the lowest average indoor radon concentration (236 Bq/m3). The geological, geochemical and radiological data obtained suggest that the most effective control on the radon concentrations of the area is related with the uranium content of the rocks; indeed, the highest contents were observed in granite G1 (21 ppm) and the lowest in the metasediments (3 ppm). This is also confirmed by the results obtained for groundwater, where granites present the highest concentrations of dissolved radon (up to 938 Bq/l), uranium (5-18 ppb) and gross α activities (0.47-0.92 Bq/l). No important radiometric anomalies were found in relation with geological structures such as faults, veins and contacts, but a moderate increase of the uranium content can occur locally in such structures. Petrographic observations and SEM studies show that uranium is mainly contained within the rock in heavy accessory minerals (apatite, zircon, monazite, xenotime), which reduces radon emanation. Notwithstanding, due to the high U contents granites show a significant potential to induce indoor radon concentrations in dwellings in excess of the recommended value of 400 Bq/m3. Overall, we can conclude that the region of Vila Real presents a moderate to high radon risk in dwellings and groundwater. © 2010 Springer-Verlag.


Martins L.M.O.,Geosciences Center | Gomes M.E.P.,Geosciences Center | Neves L.J.P.F.,University of Coimbra | Pereira A.J.S.C.,University of Coimbra
Environmental Earth Sciences | Year: 2013

The region of Amarante (Northern Portugal) is composed of Hercynian tardi-tectonics granites and Paleozoic metasediments. Petrographic observations and SEM studies show that uranium is mainly contained within the rock in heavy accessory minerals such as apatite, zircon, monazite, uraninite, thorite and thorianite. The geological, geochemical and radiological data obtained suggest that the radon concentrations in dwellings of the studied area are mainly related with the uranium content of the rocks. Indeed, the highest contents were observed in granite AT2 of Padronelo (18. 2 ppm) and the granite AT1 of Telões (10. 3 ppm), with metasediments showing much lower uranium contents of 1. 6 ppm; radon concentrations were evaluated in dwellings, using CR-39 passive detectors, and the results obtained in winter conditions suggest that the most productive geological units are the granites AT2 and AT1, with geometric means of 430 and 220 Bq/m3, respectively, while the metasediments show the lowest value of 85 Bq/m3. Some moderate radiometric anomalies, where uranium contents can double typical background values, were found in relation with specific fault systems of the region affecting granitic rocks, thus increasing radon risk; this is an indication of uranium mobility, likely resulting from the leaching of primary mineral supports as uraninite. Groundwater radionuclide contents show a wide range of results, with the highest activities related with granitic lithologies: 2,295 Bq/l for radon, 0. 83 Bq/l for gross α and 0. 71 Bq/l for gross β, presenting metasediments much lower values, in good agreement with other results obtained. Absorbed dose measured with gamma spectrometers in direct contact with the rocks is directly related with the uranium contents of the rocks, and thus works as a fast proxy for radon risk. It is concluded that radon risk is moderate to high in the granitic areas of the Amarante region and low in the metasediments of the same region. © 2012 Springer-Verlag.


Reis A.I.M.,Geosciences Center | Silva M.M.V.G.,Geosciences Center | Antunes I.M.H.R.,Polytechnic Institute of Castelo Branco
Estudios Geologicos | Year: 2010

The Vila Nova pluton is a small, Pre-Variscan granitic body that intruded rocks of the Central Iberian Zone near the contact with the Ossa Morena Zone and is affected by several shear zones and faults. Its contact metamorphic aureole is constituted by micaschist with porphyroblasts in the outer zone and hornfels in the inner zone. Small metasedimentar xenoliths are dispersed all over the body. The pluton has a great mineralogical heterogeneity with pronounced variations in muscovite/biotite and plagioclase/ microcline contents and is classified as granite, granodiorite or tonalite. It is a leucogranite, highly peraluminous (A/CNK = 1.31 - 1.64), magnesian and calc-alkaline to alkaline-calcic. The variation diagrams show curvilinear trends with silica. Eu/Eu* = 0.47 - 0.77 and there is a slight enrichment in LREE relative to HREE. The normalized diagrams indicated dominantly crustal granite, related to subduction. U-Pb isotopic data of zircon and monazite gives 540-542 Ma age.

Loading Geosciences Center collaborators
Loading Geosciences Center collaborators