Entity

Time filter

Source Type

Apia, Samoa

Muluneh A.A.,Addis Ababa Institute of Technology | Muluneh A.A.,University of Rome La Sapienza | Kidane T.,Addis Ababa Institute of Technology | Rowland J.,University of Auckland | Bachtadse V.,Geophysics Section
Tectonophysics | Year: 2013

Thirty-four cooling units from the Pleistocene extrusive volcanic rocks exposed in regions bordered by the active Red Sea magmatic segments, in the northwestern central Afar Depression, were sampled for paleomagnetic study. Six to 12 samples were collected from each paleomagnetic site. Samples were demagnetized using Alternating Field (AF) and Thermal (TH) demagnetization techniques. The samples were then measured using the JR-6A spinner magnetometer available at the department of Earth Sciences of Addis Ababa University. The Natural Remanent Magnetization (NRM) direction reveals mostly one or two simple and straightforward components of magnetizations; the first, low-stability component is isolated by heating to 100°C-300°C or by AF of 10-30mT. The magnetization directions after these steps generally define straight lines that are directed towards the origin, and interpreted as primary NRM or ChRM (Characteristic Remanent Magnetization) and the direction of magnetization was determined. Results of the magnetization decay curve plots and rock magnetic analyses using a Variable Field Translation Balance (VFTB) indicate that magnetic mineralogy is dominated by Ti-poor titano-magnetite with magnetic grain sizes in the pseudo-single domain (PSD) range, with minor presence of goethite and maghemite in a few cases. An overall mean direction calculated for the 26 sites located within the overlap zone is obtained (D=354.4°, I=13.2°, N=26, K=43.5, α95=4.3°), and compared to the expected Geomagnetic Axial Dipole (GAD) field, based on the Apparent Polar Wander Path (APWP) Curve of the African plate (Besse and Courtillot, 1991, 2003), a difference in declination δD=-6.5°±4.0° is obtained. This declination difference is interpreted as counterclockwise rotation about a vertical axis, in agreement with rift propagation and right stepping overlap geometry of the Alayta-Dabbahu magmatic segments. The difference in inclination δI=7.8°±3.9° is believed to be related to the long-standing non-dipole field in Afar (Courtillot et al., 1984; Kidane et al., 2003). © 2013 Elsevier B.V. Source


Adetunji A.Q.,University of Manitoba | Ferguson I.J.,University of Manitoba | Jones A.G.,Geophysics Section
Journal of Geophysical Research B: Solid Earth | Year: 2015

Magnetotelluric (MT) responses at the Proterozoic Grenville Front in Canada have been interpreted as being caused by lithospheric electrical anisotropy, and the area is often noted as a classic example of lithospheric anisotropy. This study reevaluates evidence for the electrical anisotropy using 56 MT stations. The spatially uniform MT responses noted at the Grenville Front extend to ~200km southeast and for at least 400km along strike and are associated with rocks at less than 150km depth. Examination of induction arrows at longer periods shows arrows at high angle to the MT conductive direction consistent with the presence of macroscopic resistivity structures. New 2-D anisotropic inversions show that electrical anisotropy is not required to fit the MT data. The results indicate that in the resistive mantle lithosphere beneath the Grenville Front, and in conductive lithosphere in adjacent areas, the maximum horizontal resistivity anisotropy is <10%, much less than the factor of 15 determined in earlier 1-D studies. The results suggest that the upper lithospheric mantle in the area is devoid of significant electrical anisotropy and that the observed MT response directionality is due to large-scale resistivity structure. We interpret the spatially consistent MT responses observed at the Grenville Front as being associated with the resistive Archean lithosphere extending southeast beneath the Grenville Front. The obliquity between seismic and MT responses arises because the Superior fabric is oblique to the seismic fast direction. If dextral shearing occurred, it appears to have not caused any significant shape preferred electrical anisotropy. ©2015. American Geophysical Union. Source


Rosenbaum G.,University of Queensland | Piana Agostinetti N.,Geophysics Section
Tectonics | Year: 2015

Lithospheric tear faults are expected to develop in response to along-strike variations in the rates of slab rollback. However, the exact geometry of such structures and their crustal and upper mantle expressions are still debated. We present an analysis of seismic, structural, and morphological features that possibly represent the expression of lithospheric segmentation in the northern Apennines. Geophysical observations show evidence for the existence of a discontinuity in the lithospheric structure beneath the northern Apennines, characterized by a change in the spatial distribution of intermediate-depth seismicity, along-strike variations in the pattern of crustal seismicity, and a bend in the Moho topography. The near-surface expression of this discontinuity is associated with an abrupt change in the morphology and exhumation history of the northern Apennines in the proximity of the Livorno-Sillaro Lineament. We interpret these features as evidence for incipient tearing of the lithospheric slab beneath the northern Apennines, marking the boundary between domains that underwent contrasting styles of lithospheric deformation, which are either associated with different rates of slab rollback or a transition from underplating to retreat. We suggest that similar types of structures may play a crucial role in the evolution of convergent plate boundaries, allowing segmentation of orogenic belts and facilitating the development of orogenic curvatures. Ultimately, further tearing along such structures could potentially lead to the occurrence of tear-related magmatism and the formation of slab windows. ©2015. American Geophysical Union. Source


Chiarabba C.,Italian National Institute of Geophysics and Volcanology | Agostinetti N.P.,Geophysics Section | Bianchi I.,University of Vienna
Geophysical Research Letters | Year: 2016

A persistent seismic gap is hypothesized in the Pollino area (southern Italy), at the boundary between the Apennines and the Calabrian arc. Presently, seismic swarms are active in the gap area, creating concerns for possible future large earthquakes. In this study, we model the deep Earth structure across the Pollino range to give new insights on the kinematics and tectonics of this enigmatic area. Migrated receiver function profiles show a subvertical lithospheric discontinuity, delineated by an abrupt change in Moho depth and mantle fabrics across the range. The lithospheric-scale discontinuity bounds the area of earthquake swarm activity and likely decouples the delamination-related extension of the Apennines from the extensional collapse of the Calabrian fore arc. This large-scale discontinuity implies that the normal faults are segmented across the range, limiting the lateral extent of faults where future earthquakes might occur. ©2016. American Geophysical Union. All Rights Reserved. Source


Kidane T.,Addis Ababa Institute of Technology | Bachtadse V.,Geophysics Section | Alene M.,Addis Ababa Institute of Technology
Physics of the Earth and Planetary Interiors | Year: 2014

Eighty-one paleomagnetic cores were collected from 10 locations across a black limestone unit within the core of Negash Synclinorium, northern Ethiopia in order to test the proposed Snowball Earth events for the diamictite unit of the Tambien Group. Cores were cut into two standard paleomagnetic specimens and were subjected to stepwise demagnetizations using both Thermal (TH) and alternating field (AF) techniques. Rock magnetic analyses on representative specimens were done and results revealed goethite, pyrrhotite, titano-magnetite, and titano-hematite to be the major magnetic materials carrying the magnetizations with PSD (pseudo single domain) grain size range. In most cases paleomagnetic directions are defined by a single component of magnetization, where a viscous component is present it is usually removed by heating to a temperature of ~200°C or an AF of ~10mT. The high stability component isolated above temperature of 200°C or AF of 15mT, defined straight line trajectories directed towards the origin and considered as the Characteristic Remanent Magnetization Direction (ChRM). The direction of magnetization of the ChRM is determined for samples with stable straight line segments by the best-fit line using the least square technique of Kirschvink (1980). In the cases of overlapping spectra and unblocking temperatures, direction of magnetization is determined by remagnetization circles of Halls (1976, 1978). When site mean ChRM directions are plotted on stereogram, their distribution is relatively clustered in geographic coordinates and the overall mean direction is Decg=358.5°, Incg=16.6° (α95=3.8°, K=162.8, N=10). After a structural restoration to the horizontal is made the directions disperse and fail the fold test of both McElhinny's and McFadden's tests and the mean direction is Decs=353.5°, Incs=8.8° (α95=18.9°, K=7.5, N=10). This is interpreted to result from a later remagnetization of the black limestone. All directions are normal in polarity and have mean unrestored paleomagnetic directions comparable to the Quaternary paleomagnetic directions. Virtual Geomagnetic poles (VGP) in the unrestored position is used to calculate overall mean VGP position resulting long=235.7°E, latg=84.5°N (A95=3.0°, N=10). Comparison of the obtained pole with the apparent polar wander path (APWP) curve for Africa of Besse and Courtillot (1991, 2003) and with the 2Ma reference pole of stable Africa (Kidane et al., 2003) is found to be consistent with remagnetizations during the Quaternary period. Hence supporting evidence for the proposed Snowball Earth event of the Sturtian glaciation in the Negash rocks could not, unfortunately, be obtained from paleomagnetism. © 2014 Elsevier B.V. Source

Discover hidden collaborations