Lille, France


Lille, France
Time filter
Source Type

Contreras S.,Genoscreen | Sagory-Zalkind P.,Genostar | Blanquart H.,Genoscreen | Iltis A.,Genostar | Morand S.,L'Oréal
Genome Announcements | Year: 2017

We report the first complete genome sequence of a Vitreoscilla filiformis strain (ATCC 15551) that is used in the cosmetic industry as Vitreoscilla ferment. The assembled genome consisted of one chromosome and two plasmids. These data will provide valuable information and important insights into the physiology of this filamentous organism. © 2017 Contreras et al.

Gauzere C.,French Scientific and Technical Center for Building | Moletta-Denat M.,French Scientific and Technical Center for Building | Blanquart H.,Genoscreen | Ferreira S.,Genoscreen | And 3 more authors.
Indoor Air | Year: 2014

The microbial content of air has as yet been little described, despite its public health implications, and there remains a lack of environmental microbial data on airborne microflora in enclosed spaces. In this context, the aim of this study was to characterize the diversity and dynamics of airborne microorganisms in the Louvre Museum using high-throughput molecular tools and to underline the microbial signature of indoor air in this human-occupied environment. This microbial community was monitored for 6 month during occupied time. The quantitative results revealed variations in the concentrations of less than one logarithm, with average values of 103 and 104 Escherichia coli/Aspergillus fumigatus genome equivalent per m3 for bacteria and fungi, respectively. Our observations highlight the stability of the indoor airborne bacterial diversity over time, while the corresponding eukaryote community was less stable. Bacterial diversity characterized by pyrosequencing 454 showed high diversity dominated by the Proteobacteria which represented 51.1%, 46.9%, and 38.4% of sequences, for each of the three air samples sequenced. A common bacterial diversity was underlined, corresponding to 58.4% of the sequences. The core species were belonging mostly to the Proteobacteria and Actinobacteria, and to the genus Paracoccus spp., Acinetobacter sp., Pseudomonas sp., Enhydrobacter sp., Sphingomonas sp., Staphylococcus sp., and Streptococcus sp. © 2013 John Wiley & Sons A/S.

Allix-Beguec C.,Genoscreen | Wahl C.,Genoscreen | Hanekom M.,Stellenbosch University | Nikolayevskyy V.,PHE National Mycobacterial Reference Laboratory and Clinical TB and HIV Group | And 17 more authors.
Journal of Clinical Microbiology | Year: 2014

Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/ 24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single- locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.Copyright © 2014, American Society for Microbiology. All Rights Reserved.

PubMed | Erasme Hospital, Genoscreen, French Institute of Health and Medical Research, Onze Lieve Vrouw hospital and Applied Maths
Type: Journal Article | Journal: Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases | Year: 2016

We used a two-step whole genome sequencing analysis for resolving two concurrent outbreaks in two neonatal services in Belgium, caused by exfoliative toxin A-encoding-gene-positive (eta+) methicillin-susceptible Staphylococcus aureus with an otherwise sporadic spa-type t209 (ST-109). Outbreak A involved 19 neonates and one healthcare worker in a Brussels hospital from May 2011 to October 2013. After a first episode interrupted by decolonization procedures applied over 7months, the outbreak resumed concomitantly with the onset of outbreak B in a hospital in Asse, comprising 11 neonates and one healthcare worker from mid-2012 to January 2013. Pan-genome multilocus sequence typing, defined on the basis of 42 core and accessory reference genomes, and single-nucleotide polymorphisms mapped on an outbreak-specific de novo assembly were used to compare 28 available outbreak isolates and 19 eta+/spa-type t209 isolates identified by routine or nationwide surveillance. Pan-genome multilocus sequence typing showed that the outbreaks were caused by independent clones not closely related to any of the surveillance isolates. Isolates from only ten cases with overlapping stays in outbreak A, including four pairs of twins, showed no or only a single nucleotide polymorphism variation, indicating limited sequential transmission. Detection of larger genomic variation, even from the start of the outbreak, pointed to sporadic seeding from a pre-existing exogenous source, which persisted throughout the whole course of outbreak A. Whole genome sequencing analysis can provide unique fine-tuned insights into transmission pathways of complex outbreaks even at their inception, which, with timely use, could valuably guide efforts for early source identification.

Merker M.,Research Center Borstel | Blin C.,EPHE Paris | Mona S.,EPHE Paris | Duforet-Frebourg N.,CNRS Complex Medical Engineering Laboratory | And 51 more authors.
Nature genetics | Year: 2015

Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.

Varghese B.,King Faisal Specialist Hospital And Research Center | Supply P.,Genoscreen | Supply P.,French Institute of Health and Medical Research | Supply P.,French National Center for Scientific Research | And 7 more authors.
PLoS ONE | Year: 2013

Background: The phylogeographical structure of Mycobacterium tuberculosis is generally bimodal in low tuberculosis (TB) incidence countries, where genetic lineages of the isolates generally differ with little strain clustering between autochthonous and foreign-born TB patients. However, less is known on this structure in Saudi Arabia-the most important hub of human migration as it hosts a total population of expatriates and pilgrims from all over the world which is equal to that of its citizens. Methodology: We explored the mycobacterial phylogenetic structure and strain molecular clustering in Saudi Arabia by genotyping 322 drug-resistant clinical isolates collected over a 12-month period in a national drug surveillance survey, using 24 locus-based MIRU-VNTR typing and spoligotyping. Principal Findings: In contrast to the cosmopolitan population of the country, almost all the known phylogeographic lineages of M. tuberculosis complex (with noticeable exception of Mycobacterium africanum/West-African 1 and 2) were detected, with Delhi/CAS (21.1%), EAI (11.2%), Beijing (11.2%) and main branches of the Euro-American super-lineage such as Ghana (14.9%), Haarlem (10.6%) and Cameroon (7.8%) being represented. Statistically significant associations of strain lineages were observed with poly-drug resistance and multi drug resistance especially among previously treated cases (p value of < = 0.001 for both types of resistance), with relative over-representation of Beijing strains in the latter category. However, there was no significant difference among Saudi and non-Saudi TB patients regarding distribution of phylogenetic lineages (p = 0.311). Moreover, 59.5% (22/37) of the strain molecular clusters were shared between the Saudi born and immigrant TB patients. Conclusions: Specific distribution of M. tuberculosis phylogeographic lineages is not observed between the autochthonous and foreign-born populations. These observations might reflect both socially favored ongoing TB transmission between the two population groups, and historically deep-rooted, prolonged contacts and trade relations of the peninsula with other world regions. More vigorous surveillance and strict adherence to tuberculosis control policies are urgently needed in the country. © 2013 Varghese et al.

Grange P.A.,Paris-Sorbonne University | Allix-Beguec C.,Genoscreen | Chanal J.,Paris-Sorbonne University | Benhaddou N.,Groupe Hospitalier Paris Center Cochin Hotel Dieu Broca | And 6 more authors.
Sexually Transmitted Diseases | Year: 2013

Two major Treponema pallidum subtypes, 14 d/g and 14 d/f, were identified in a population of 119 patients with syphilis in Paris, France, characterized by a high proportion of men who have sex with men. A new subtype named 11 q/j was characterized, and a reinfection case was determined in 1 patient having consecuitve syphilis infection at 19-month interval. Copyright © 2013 American Sexually Transmitted Diseases Association All rights reserved.

Loading GenoScreen collaborators
Loading GenoScreen collaborators