Entity

Time filter

Source Type


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2012.2.4.5-2 | Award Amount: 8.55M | Year: 2012

Inflammatory bowel diseases affect 0.8% of the Europeans, and are associated with high morbidity, definite mortality and an increasing economic burden. Current diagnostic tools and therapeutics for IBD are unsatisfactory. Development of biomarkers allowing insights into pathogenesis, prognosis and targeted therapy is a major unmet need. This programme addresses that need. IBD-BIOM is a multidisciplinary consortium of leading academic and industrial SME researchers in inflammatory bowel disease, genomics, glycomics, glycoproteomics and activomics. Recent genome-wide association studies performed by IBD-BIOM partners have identified nearly 100 genes associated with IBD, but clinical application of these is so far limited. IBD-BIOM will capitalise on its existing high quality clinical, genetic, biochemical and immunological data and biological samples on over 6000 very well characterised IBD patients and controls by exploiting novel technological approaches made available through the expertise and global leading position of IBD-BIOM partners. These comprise cutting edge epigenetic, glycomic, glycoproteomic and activomic approaches which were all previously reported to be associated with inflammation and disturbances to the immune system. The inclusion of these complementary analyses in the diagnostics of IBD should also facilitate elucidation of pathways through which environmental exposures influence IBD risk and progression. A complex systems biology approach will be used to integrate, interrogate and understand this multidimensional dataset to identify novel early diagnostic and prognostic biomarkers and new targets for therapeutic intervention. The track record of achievement of IBD-BIOM partners coupled to the central and leading positions of the research-intensive SME partners in IBD-BIOM is a strong indication that the ambitions work programme will be achieved and a framework to facilitate swift conversion of research discoveries into commercial products.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2012.2.1.1-3 | Award Amount: 7.88M | Year: 2012

MIMOmics develops statistical methods for the integrated analysis of metabolomics, proteomics, glycomics and genomic datasets in large studies. Our project is based on our involvement in studies participating in EU funded projects, i.e. GEHA, IDEAL, Mark-Age, ENGAGE and EuroSpan. In these consortia the primary goal is to identify molecular profiles that monitor and explain complex traits with novel findings so far. Support for methodological development is missing. The state-of-the-art methodology does not match by far the complexity of the biological problem. Complex data are being analysed in a rather simple way which misses the opportunity to uncover combinations of predictive profiles among the omics data. The objectives of MIMOmics are: to develop a statistical framework of methods for all analysis steps needed for identifying and interpreting omics-based biomarkers; and to integrate data derived from multiple omics platforms across several study designs and populations. Specific steps include: experimental design; pipelines for data gathering; cleaning of noisy spectra; predictive modeling of biomarkers; meta analysis; and causality assessment. To enhance our understanding, systems approaches will be considered for pathways and structural modelling of biological networks. The major challenge in the joint analysis of omics datasets will be to develop methods that deal with the high dimensionality, noisy spectral data, heterogeneity, and structure of these datasets. To perform these tasks successfully we bring together established EU academic and industrial researchers in metabolomics, glycomics, biostatistics, bioinformatics, scientific computing and epidemiology, with complementary expertise. A key feature of our project is the validation of novel methodology by performing a proof of principle (Metabolic Health) . Special effort will be made for rapid uptake of methods by communication with associated consortia and development of user-friendly software


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: HEALTH.2013.2.2.1-5 | Award Amount: 8.58M | Year: 2013

Pain-OMICS is a multidisciplinary consortium of leading clinical, academic and SME researchers in pain and different omics technologies. Genome-wide association studies identified a number of loci associated with pain, but the level of knowledge about underlying mechanisms of different pain syndromes as well as individual variation in the disease course remains inadequate. Pain-OMICS will capitalise on its existing high quality clinical, genetic, biochemical and pharmacological data and biological samples on over 5000 well characterised patients with low-back pain (LBP) and controls available to our EU and US clinical partners. We will exploit novel technological approaches made available through the expertise and global leading position of our analytical partners. These comprise cutting edge genomic, epigenomic, glycomic, and activomic approaches which reflect signal transduction and membrane dynamics. We believe that the inclusion of these complementary analyses will elucidate pathways through which acute LBP fails to resolve and becomes chronic LBP. In addition, these approaches will reveal pathways and biomarkers of chronic pain through which individual differences affects symptoms and response to therapy. Participation of leading clinics on both sides of the Atlantic will enable replication of all finding in at least three independent large cohorts, as well as in prospective study and a large twin cohort. A complex systems biology approach will be used to integrate, interrogate and understand this multidimensional dataset in order to achieve the aims of identifying novel diagnostic and prognostic biomarkers as well as new targets for therapeutic intervention. The track record of achievement of our partners coupled to participation of research-intensive SMEs is a strong indication that the ambitious work programme will be achieved and provides a framework for rapid translation of research discoveries into solutions for the benefit of large numbers of patients.


Grant
Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.29M | Year: 2015

Colorectal cancer (CRC) is a major worldwide cancer burden with about 1.4 million cases in 2012 and an annual mortality of approximately 700,000. Early detection is crucial as treatment is most efficient in early stages where population based screenings could substantially reduce incidence and mortality. Current screening techniques are invasive or lack sensitivity and specificity. Moreover, the molecular mechanisms leading to the formation of different antigens suggested as CRC biomarkers and potential therapeutic targets are poorly understood, especially with regard to carbohydrate-based molecules, such as glycans. Enhancing our understanding of the structure-function relationship of glycosylation in CRC could lead to the discovery of improved diagnostic and prognostic biomarkers and pave the way for nov-el therapeutic targets. Building on an established network of analysts with many years of experience in (glyco)proteomics and biomarker research, in collaboration with colleagues in the field of glycobiology and glyco-immunology, GlyCoCan will develop new methods, and use current state of the art methods, to investigate the role of glycosylation in many different aspects of CRC. The GlyCoCan multi-disciplinary network will principally be a training programme with a substantial industrial focus on technology transfer and teaching of internationally adopted biopharma regulations (GMP, ISO9001, ICH guidelines). The underlying specific research objectives will be addressed within individual ESR projects, giving rise to a generation of ESRs whose main focus is investigating and tackling the challenges of the role of glycosylation within CRC and other diseases. The network will address the currently unmet need for glycosylation researchers with an inter-disciplinary perspective to fully exploit the immense potential of the young scientific field of glyco-oncology and to set them on a path to successful and productive careers in academic and industrial collaborations.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-IAPP | Phase: FP7-PEOPLE-2012-IAPP | Award Amount: 1.82M | Year: 2013

The main aim of the HTP-GlycoMet proposal is to develop technologies, which will enable high-throughput analysis of glycosylation of individual proteins from body fluids and cell membranes and apply them to understand some key processes in immunity and infections. Glycan analysis is extremely demanding from both technological and conceptual aspect and (beside one study performed by partners in this proposal) large-scale studies of glycosylation of individual proteins were not attempted previously. However, we are confident that by successfully combining complementary expertise in the (i) production of specialised monolithic chromatographic tools for high-throughput fractionation of complex biological fluids (BIA-SEP), (ii) purification of proteins from body fluids and membrane proteins (UNI-RI), (iii) high-throughput glycomic analysis by use of chromatography (Genos) and multiplexed capillary gel electrophoresis (MPI) and (iv) expertise in the field of viral immunology (MEDRI) we can achieve significant progress in this direction. All our partners are recognized leaders who already made significant progress beyond the state of the art in their respective fields. Through HTP-GlycoMet project we will organise secondments on all levels (MER, ER, ESR) to capitalize on synergistic effects of this interdisciplinary and transnational collaboration. In addition to the generation of new knowledge and the development of new innovative technologies, we will also achieve significant transfer of knowhow between academic and industrial partners. Our SME partners also expect to develop new lines of products and services through the HTP-GlycoMet programme, but also through future collaboration with HTP-GlycoMet partners beyond the lifetime of this project.

Discover hidden collaborations