Entity

Time filter

Source Type


Mendez-Vidal C.,University of Seville | Bravo-Gil N.,University of Seville | Gonzalez-Del Pozo M.,University of Seville | Vela-Boza A.,Genomics and Bioinformatics Platform of Andalusia GBPA | And 3 more authors.
BMC genetics | Year: 2014

BACKGROUND: Molecular diagnosis of Inherited Retinal Dystrophies (IRD) has long been challenging due to the extensive clinical and genetic heterogeneity present in this group of disorders. Here, we describe the clinical application of an integrated next-generation sequencing approach to determine the underlying genetic defects in a Spanish family with a provisional clinical diagnosis of autosomal recessive Retinitis Pigmentosa (arRP).RESULTS: Exome sequencing of the index patient resulted in the identification of the homozygous BBS1 p.M390R mutation. Sanger sequencing of additional members of the family showed lack of co-segregation of the p.M390R variant in some individuals. Clinical reanalysis indicated co-ocurrence of two different phenotypes in the same family: Bardet-Biedl syndrome in the individual harboring the BBS1 mutation and non-syndromic arRP in extended family members. To identify possible causative mutations underlying arRP, we conducted disease-targeted gene sequencing using a panel of 26 IRD genes. The in-house custom panel was validated using 18 DNA samples known to harbor mutations in relevant genes. All variants were redetected, indicating a high mutation detection rate. This approach allowed the identification of two novel heterozygous null mutations in RP1 (c.4582_4585delATCA; p.I1528Vfs*10 and c.5962dupA; p.I1988Nfs*3) which co-segregated with the disease in arRP patients. Additionally, a mutational screening in 96 patients of our cohort with genetically unresolved IRD revealed the presence of the c.5962dupA mutation in one unrelated family.CONCLUSIONS: The combination of molecular findings for RP1 and BBS1 genes through exome and gene panel sequencing enabled us to explain the co-existence of two different retinal phenotypes in a family. The identification of two novel variants in RP1 suggests that the use of panels containing the prevalent genes of a particular population, together with an optimized data analysis pipeline, is an efficient and cost-effective approach that can be reliably implemented into the routine diagnostic process of diverse inherited retinal disorders. Moreover, the identification of these novel variants in two unrelated families supports the relatively high prevalence of RP1 mutations in Spanish population and the role of private mutations for commonly mutated genes, while extending the mutational spectrum of RP1. Source


Gonzalez-del Pozo M.,University of Seville | Mendez-Vidal C.,University of Seville | Bravo-Gil N.,University of Seville | Vela-Boza A.,Genomics and Bioinformatics Platform of Andalusia GBPA | And 3 more authors.
PloS one | Year: 2014

This study aimed to identify the underlying molecular genetic cause in four Spanish families clinically diagnosed of Retinitis Pigmentosa (RP), comprising one autosomal dominant RP (adRP), two autosomal recessive RP (arRP) and one with two possible modes of inheritance: arRP or X-Linked RP (XLRP). We performed whole exome sequencing (WES) using NimbleGen SeqCap EZ Exome V3 sample preparation kit and SOLID 5500xl platform. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation and the absence in local control population. This strategy allowed the detection of: (i) one novel heterozygous splice-site deletion in RHO, c.937-2_944del, (ii) one rare homozygous mutation in C2orf71, c.1795T>C; p.Cys599Arg, not previously associated with the disease, (iii) two heterozygous null mutations in ABCA4, c.2041C>T; p.R681* and c.6088C>T; p.R2030*, and (iv) one mutation, c.2405-2406delAG; p.Glu802Glyfs*31 in the ORF15 of RPGR. The molecular findings for RHO and C2orf71 confirmed the initial diagnosis of adRP and arRP, respectively, while patients with the two ABCA4 mutations, both previously associated with Stargardt disease, presented symptoms of RP with early macular involvement. Finally, the X-Linked inheritance was confirmed for the family with the RPGR mutation. This latter finding allowed the inclusion of carrier sisters in our preimplantational genetic diagnosis program. Source


Ortuno F.M.,CITIC UGR | Valenzuela O.,University of Granada | Rojas F.,CITIC UGR | Pomares H.,CITIC UGR | And 3 more authors.
Bioinformatics | Year: 2013

Motivation: Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences.Results: The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. Availability: The source code is available at http://www.ugr.es/∼fortuno/ MOSAStrE/MO-SAStrE.zip. Supplementary Information: Supplementary material is available at Bioinformatics online. © 2013 The Author. Source


Pozo M.G.-D.,University of Seville | Pozo M.G.-D.,Research Center Biomedica En Red Of Enfermedades Raras Ciberer | Mendez-Vidal C.,University of Seville | Mendez-Vidal C.,Research Center Biomedica En Red Of Enfermedades Raras Ciberer | And 9 more authors.
PLoS ONE | Year: 2014

This study aimed to identify the underlying molecular genetic cause in four Spanish families clinically diagnosed of Retinitis Pigmentosa (RP), comprising one autosomal dominant RP (adRP), two autosomal recessive RP (arRP) and one with two possible modes of inheritance: arRP or X-Linked RP (XLRP). We performed whole exome sequencing (WES) using NimbleGen SeqCap EZ Exome V3 sample preparation kit and SOLID 5500xl platform. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation and the absence in local control population. This strategy allowed the detection of: (i) one novel heterozygous splice-site deletion in RHO, c.937-2-944del, (ii) one rare homozygous mutation in C2orf71, c.1795T>C; p.Cys599Arg, not previously associated with the disease, (iii) two heterozygous null mutations in ABCA4, c.2041C>T; p.R681∗ and c.6088C>T; p.R2030∗, and (iv) one mutation, c.2405-2406delAG; p.Glu802Glyfs∗31 in the ORF15 of RPGR. The molecular findings for RHO and C2orf71 confirmed the initial diagnosis of adRP and arRP, respectively, while patients with the two ABCA4 mutations, both previously associated with Stargardt disease, presented symptoms of RP with early macular involvement. Finally, the X-Linked inheritance was confirmed for the family with the RPGR mutation. This latter finding allowed the inclusion of carrier sisters in our preimplantational genetic diagnosis program. © 2014 González-del Pozo et al. Source


Lopez-Domingo F.J.,Genomics and Bioinformatics Platform of Andalusia GBPA | Florido J.P.,Genomics and Bioinformatics Platform of Andalusia GBPA | Rueda A.,Genomics and Bioinformatics Platform of Andalusia GBPA | Dopazo J.,Genomics and Bioinformatics Platform of Andalusia GBPA | And 2 more authors.
Bioinformatics | Year: 2014

Motivation: Targeted enrichment sequencing by next-generation sequencing is a common approach to interrogate specific loci or the whole exome in the human genome. The efficiency and the lack of bias in the enrichment process need to be assessed as a quality control step before performing downstream analysis of the sequence data. Tools that can report on the sensitivity, specificity, uniformity and other enrichment-specific features are needed. Results: We have implemented the next-generation sequencing data Capture Assessment Tool (ngsCAT), a tool that takes the information of the mapped reads and the coordinates of the targeted regions as input files, and generates a report with metrics and figures that allows the evaluation of the efficiency of the enrichment process. The tool can also take as input the information of two samples allowing the comparison of two different experiments. © 2014 The Author. Published by Oxford University Press. All rights reserved. Source

Discover hidden collaborations