Time filter

Source Type

Warszawa, Poland

Saw K.-Y.,Kuala Lumpur Sports Medicine Center | Anz A.,Andrews Research and Education Institute | Jee C.S.-Y.,Kuala Lumpur Sports Medicine Center | Ng R.C.-S.,Kuala Lumpur Sports Medicine Center | And 2 more authors.
Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association | Year: 2015

PURPOSE: To histologically evaluate the quality of articular cartilage regeneration from the medial compartment after arthroscopic subchondral drilling followed by postoperative intra-articular injections of autologous peripheral blood stem cells (PBSCs) and hyaluronic acid with concomitant medial open-wedge high tibial osteotomy (HTO) in patients with varus deformity of the knee joint.METHODS: Eight patients with varus deformity of the knee joint underwent arthroscopic subchondral drilling of International Cartilage Repair Society (ICRS) grade 4 bone-on-bone lesions of the medial compartment with concomitant HTO. These patients were part of a larger pilot study in which 18 patients underwent the same procedure. PBSCs were harvested and cryopreserved preoperatively. At 1 week after surgery, 8 mL of PBSCs was mixed with 2 mL of hyaluronic acid and injected intra-articularly into the knee joint; this was repeated once a week for 5 consecutive weeks. Three additional intra-articular injections were administered weekly at intervals of 6, 12, and 18 months postoperatively. Informed consent was obtained at the time of hardware removal for opportunistic second-look arthroscopy and chondral biopsy. Biopsy specimens were stained with H&E, safranin O, and immunohistochemical staining for type I and II collagen. Specimens were graded using the 14 components of the ICRS Visual Assessment Scale II, and a total score was obtained.RESULTS: Second-look arthroscopy showed satisfactory healing of the regenerated cartilage. Histologic analysis showed significant amounts of proteoglycan and type II collagen. The total ICRS Visual Assessment Scale II histologic scores comparing the regenerated articular cartilage (mean, 1,274) with normal articular cartilage (mean, 1,340) indicated that the repair cartilage score approached 95% of the normal articular cartilage score. There were no infections, delayed unions, or nonunions.CONCLUSIONS: Chondrogenesis with stem cells in combination with medial open-wedge HTO for varus deformity correction of the knee joint regenerates cartilage that closely resembles the native articular cartilage.LEVEL OF EVIDENCE: Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved. Source

Teper S.J.,Okregowy Szpital Kolejowy | Nowinska A.,Okregowy Szpital Kolejowy | Pilat J.,Okregowy Szpital Kolejowy | Palucha A.,Genomed Inc. | Wylegala E.,Okregowy Szpital Kolejowy
Molecular Vision | Year: 2010

Purpose: To determine whether gene polymorphisms of the major genetic risk factor for age-related macular susceptibility 2 (ARMS2 A69S) and the complement factor H Y402H influence the response to a variable-dosing treatment regimen with ranibizumab for age-related macular degeneration. Methods: This prospective cohort study included 90 patients (90 eyes) with exudative age related macular degeneration (AMD) treated with ranibizumab. Patients underwent a 1-year treatment as in the Study of Ranibizumab in Patients with Subfoveal Choroidal Neovascularization Secondary to Age-Related Macular Degeneration (Mitchell et al.). Injections were administered monthly when a patient lost five letters on the Early Treatment Diabetic Retinopathy Study chart or gained 100 μm in central subfield retinal thickness (CSRT). Genotypes (rs10490924 and rs1061170) were analyzed using gene sequence analysis. Best-corrected visual acuity (BCVA) and CSRT values were compared between ARMS2 and complement factor H genotypes. Multiple regression analysis was used to assess the statistical significance. Results: Mean increase in visual acuity was 4.44±8.12 letters with a 103.63±94.7 μm decrease in CSRT. BCVA improvement was statistically significant in all genotype groups except in homozygous 69S in the AMRS2 gene. CSRT and BCVA changes were correlated (r=0.2521; 95% CI: 0.04746-0.4364, p=0.0165). Multiple regression analysis revealed a significant impact of 69S (p=0.015) on the change in BCVA. Conclusions: Visual acuity did not improve during the study in patients homozygous for ARMS2 69S, despite a decrease in CSRT. Further investigation is needed to confirm our findings and understand the mechanisms involved. © 2010 Molecular Vision. Source

Rachwal K.,Maria Curie Sklodowska University | Matczynska E.,Jagiellonian University | Matczynska E.,Genomed Inc. | Janczarek M.,Maria Curie Sklodowska University
BMC Genomics | Year: 2015

Background: Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with red clover (Trifolium pratense). The presence of surface polysaccharides and other extracellular components as well as motility and competitiveness are essential traits for both adaptation of this bacterium to changing environmental conditions and successful infection of host plant roots. The R. leguminosarum bv. trifolii rosR gene encodes a protein belonging to the family of Ros/MucR transcriptional regulators, which contain a Cys2His2-type zinc-finger motif and are involved in the regulation of exopolysaccharide synthesis in several rhizobial species. Previously, it was established that a mutation in the rosR gene significantly decreased exopolysaccharide synthesis, increased bacterial sensitivity to some stress factors, and negatively affected infection of clover roots. Results: RNA-Seq analysis performed for the R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt2472 carrying a rosR mutation identified a large number of genes which were differentially expressed in these two backgrounds. A considerable majority of these genes were up-regulated in the mutant (63.22%), indicating that RosR functions mainly as a repressor. Transcriptome profiling of the rosR mutant revealed a role of this regulator in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Moreover, it was established that the Rt2472 strain was characterized by a longer generation time and showed an increased aggregation ability, but was impaired in motility as a result of considerably reduced flagellation of its cells. Conclusions: The comparative transcriptome analysis of R. leguminosarum bv. trifolii wild-type Rt24.2 and the Rt2472 mutant identified a set of genes belonging to the RosR regulon and confirmed the important role of RosR in the regulatory network. The data obtained in this study indicate that this protein affects several cellular processes and plays an important role in bacterial adaptation to environmental conditions. © 2015 Rachwal et al. Source

Saw K.-Y.,Kuala Lumpur Sports Medicine Center | Anz A.,Andrews Research and Education Institute | Siew-Yoke Jee C.,Kuala Lumpur Sports Medicine Center | Merican S.,Kuala Lumpur Sports Medicine Center | And 3 more authors.
Arthroscopy - Journal of Arthroscopic and Related Surgery | Year: 2013

Purpose: The purpose of this study was to compare histologic and magnetic resonance imaging (MRI) evaluation of articular cartilage regeneration in patients with chondral lesions treated by arthroscopic subchondral drilling followed by postoperative intra-articular injections of hyaluronic acid (HA) with and without peripheral blood stem cells (PBSC). Methods: Fifty patients aged 18 to 50 years with International Cartilage Repair Society (ICRS) grade 3 and 4 lesions of the knee joint underwent arthroscopic subchondral drilling; 25 patients each were randomized to the control (HA) and the intervention (PBSC + HA) groups. Both groups received 5 weekly injections commencing 1 week after surgery. Three additional injections of either HA or PBSC + HA were given at weekly intervals 6 months after surgery. Subjective IKDC scores and MRI scans were obtained preoperatively and postoperatively at serial visits. We performed second-look arthroscopy and biopsy at 18 months on 16 patients in each group. We graded biopsy specimens using 14 components of the International Cartilage Repair Society Visual Assessment Scale II (ICRS II) and a total score was obtained. MRI scans at 18 months were assessed with a morphologic scoring system. Results: The total ICRS II histologic scores for the control group averaged 957 and they averaged 1,066 for the intervention group (P =.022). On evaluation of the MRI morphologic scores, the control group averaged 8.5 and the intervention group averaged 9.9 (P =.013). The mean 24-month IKDC scores for the control and intervention groups were 71.1 and 74.8, respectively (P =.844). One patient was lost to follow-up. There were no notable adverse events. Conclusions: After arthroscopic subchondral drilling into grade 3 and 4 chondral lesions, postoperative intra-articular injections of autologous PBSC in combination with HA resulted in an improvement of the quality of articular cartilage repair over the same treatment without PBSC, as shown by histologic and MRI evaluation. Level of Evidence: Level II, randomized controlled trial (RCT). © 2013 by the Arthroscopy Association of North America. Source

Krawczyk M.,Polish Academy of Sciences | Stankiewicz-Drogon A.,Polish Academy of Sciences | Haenni A.-L.,Institute Jacques Monod | Boguszewska-Chachulska A.,Genomed Inc.
Methods in Molecular Biology | Year: 2010

The development of techniques based on fluorescence has made it possible to create new types of assays that represent an advantageous alternative to old tests relying on radioactivity. Such a novel approach has been applied to develop a high-throughput assay to measure the helicase activity of the hepatitis C virus (HCV) NS3 protein and the inhibitory potential of several classes of compounds. The NS3 helicase is one of the most promising targets of anti-HCV-oriented screening of compounds due to the urgent need for more effective and tolerable drugs. The 96- or 384-well microplate assay that we developed is based on the use of a quenched double-stranded DNA substrate labeled with a fluorophore (Cy3 or FAM) and with a Black Hole Quencher 1 or 2. It allows for direct (real-time) measurements of substrate unwinding and inhibition of unwinding by anti-helicase compounds. After a few modifications of buffers and assay conditions this method can be applied to various variants of HCV helicase and other proteins with helicase activities. © 2009 Humana Press, a part of Springer Science+Business Media, LLC. Source

Discover hidden collaborations