Genome Project Solutions Inc.

Hercules, CA, United States

Genome Project Solutions Inc.

Hercules, CA, United States
Time filter
Source Type

Schartl M.,University of Würzburg | Walter R.B.,Texas State University | Shen Y.,Texas State University | Garcia T.,Texas State University | And 16 more authors.
Nature Genetics | Year: 2013

Several attributes intuitively considered to be typical mammalian features, such as complex behavior, live birth and malignant disease such as cancer, also appeared several times independently in lower vertebrates. The genetic mechanisms underlying the evolution of these elaborate traits are poorly understood. The platyfish, X. maculatus, offers a unique model to better understand the molecular biology of such traits. We report here the sequencing of the platyfish genome. Integrating genome assembly with extensive genetic maps identified an unexpected evolutionary stability of chromosomes in fish, in contrast to in mammals. Genes associated with viviparity show signatures of positive selection, identifying new putative functional domains and rare cases of parallel evolution. We also find that genes implicated in cognition show an unexpectedly high rate of duplicate gene retention after the teleost genome duplication event, suggesting a hypothesis for the evolution of the behavioral complexity in fish, which exceeds that found in amphibians and reptiles. © 2013 Nature America, Inc. All rights reserved.

Murtagh V.J.,Australian National University | Murtagh V.J.,University of Melbourne | O'Meally D.,Australian National University | O'Meally D.,University of Canberra | And 18 more authors.
Genome Research | Year: 2012

We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii ) BAC clones, revealing five hitherto undescribed tammarwallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated fromeach other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis - brain expressed genes on the X. © 2012 by Cold Spring Harbor Laboratory Press.

Rawlings T.A.,Cape Breton University | MacInnis M.J.,Cape Breton University | MacInnis M.J.,University of British Columbia | Bieler R.,Field Museum of Natural History | And 3 more authors.
BMC Genomics | Year: 2010

Background: Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era.Results: Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies.Conclusions: We have uncovered major changes in gene order within a family of caenogastropod molluscs that are indicative of a highly dynamic mitochondrial genome. Studies of mitochondrial genomes at such low taxonomic levels should help to illuminate the dynamics of gene order change, since the telltale vestiges of gene duplication, translocation, and remolding have not yet been erased entirely. Likewise, gene order characters may improve phylogenetic hypotheses at finer taxonomic levels than once anticipated and aid in investigating the conditions under which sequence-based phylogenies lack resolution or prove misleading. © 2010 Rawlings et al; licensee BioMed Central Ltd.

Guisinger M.M.,University of Texas at Austin | Chumley T.W.,University of Texas at Austin | Chumley T.W.,Central Washington University | Kuehl J.V.,Lawrence Berkeley National Laboratory | And 4 more authors.
Journal of Molecular Evolution | Year: 2010

Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.

Stone C.L.,U.S. Department of Agriculture | Buitrago M.L.P.,Lawrence Berkeley National Laboratory | Buitrago M.L.P.,National University of Colombia | Boore J.L.,Lawrence Berkeley National Laboratory | And 2 more authors.
Mycologia | Year: 2010

The mitochondrial (mt) genomes of two soybean rust pathogens, Phakopsora pachyrhizi and P. meibomiae, have been sequenced. The mt genome of P. pachyrhizi is a circular 31 825-bp molecule with a mean GC content of 34.6%, while P. meibomiae possesses a 32 520-bp circular molecule with a mean GC content of 34.9%. Both mt genomes contain the genes encoding ATP synthase subunits 6, 8 and 9 (atp6, atp8 and atp9), cytochrome oxidase subunits I, II and III (cox1, cox2 and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5 and nad6), the large and small mt ribosomal RNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 24 tRNA genes that recognize codons for all amino acids. The order of the protein-coding genes and tRNA is identical in the two Phakopsora species, and all genes are transcribed from the same DNA strand clockwise. Introns were identified in the cox1, cob and rnl genes of both species, with three of the introns having ORFs with motifs similar to the LAGLIDADG endonu-cleases of other fungi. Phylogenetic analysis of the 14 shared protein-coding genes agrees with commonly accepted fungal taxonomy. © 2010 by The Mycological Society of America.

Guisinger M.M.,University of Texas at Austin | Guisinger M.M.,University of California at Berkeley | Kuehl J.V.,Lawrence Berkeley National Laboratory | Boore J.L.,Lawrence Berkeley National Laboratory | And 3 more authors.
Molecular Biology and Evolution | Year: 2011

Geraniaceae plastid genomes (plastomes) have experienced a remarkable number of genomic changes. The plastomes of Erodium texanum, Geranium palmatum, and Monsonia speciosa were sequenced and compared with other rosids and the previously published Pelargonium hortorum plastome. Geraniaceae plastomes were found to be highly variable in size, gene content and order, repetitive DNA, and codon usage. Several unique plastome rearrangements include the disruption of two highly conserved operons (S10 and rps2-atpA), and the inverted repeat (IR) region in M. speciosa does not contain all genes in the ribosomal RNA operon. The sequence of M. speciosa is unusually small (128,787 bp); among angiosperm plastomes sequenced to date, only those of nonphotosynthetic species and those that have lost one IR copy are smaller. In contrast, the plastome of P. hortorum is the largest, at 217,942 bp. These genomes have experienced numerous gene and intron losses and partial and complete gene duplications. Some of the losses are shared throughout the family (e.g., trnT-GGU and the introns of rps16 and rpl16); however, other losses are homoplasious (e.g., trnG-UCC intron in G. palmatum and M. speciosa). IR length is also highly variable. The IR in P. hortorum was previously shown to be greatly expanded to 76 kb, and the IR is lost in E. texanum and reduced in G. palmatum (11 kb) and M. speciosa (7 kb). Geraniaceae plastomes contain a high frequency of large repeats (>100 bp) relative to other rosids. Within each plastome, repeats are often located at rearrangement end points and many repeats shared among the four Geraniaceae flank rearrangement end points. GC content is elevated in the genomes and also in coding regions relative to other rosids. Codon usage per amino acid and GC content at third position sites are significantly different for Geraniaceae protein-coding sequences relative to other rosids. Our findings suggest that relaxed selection and/or mutational biases lead to increased GC content, and this in turn altered codon usage. We propose that increases in genomic rearrangements, repetitive DNA, nucleotide substitutions, and GC content may be caused by relaxed selection resulting from improper DNA repair. © 2010 The Author.

Rota-Stabelli O.,University College London | Rota-Stabelli O.,National University of Ireland, Maynooth | Kayal E.,Iowa State University | Gleeson D.,Landcare Research | And 6 more authors.
Genome Biology and Evolution | Year: 2010

Ecdysozoa is the recently recognized clade of molting animals that comprises the vast majority of extant animal species and the most important invertebrate model organisms-the fruit fly and the nematode worm. Evolutionary relationships within the ecdysozoans remain, however, unresolved, impairing the correct interpretation of comparative genomic studies. In particular, the affinities of the three Panarthropoda phyla (Arthropoda, Onychophora, and Tardigrada) and the position of Myriapoda within Arthropoda (Mandibulata vs. Myriochelata hypothesis) are among the most contentious issues in animal phylogenetics. To elucidate these relationships, we have determined and analyzed complete or nearly complete mitochondrial genome sequences of two Tardigrada, Hypsibius dujardini and Thulinia sp. (the first genomes to date for this phylum); one Priapulida, Halicryptus spinulosus; and two Onychophora, Peripatoides sp. and Epiperipatus biolleyi; and a partial mitochondrial genome sequence of the Onychophora Euperipatoides kanagrensis. Tardigrada mitochondrial genomes resemble those of the arthropods in term of the gene order and strand asymmetry, whereas Onychophora genomes are characterized by numerous gene order rearrangements and strand asymmetry variations. In addition, Onychophora genomes are extremely enriched in A and T nucleotides, whereas Priapulida and Tardigrada are more balanced. Phylogenetic analyses based on concatenated amino acid coding sequences support a monophyletic origin of the Ecdysozoa and the position of Priapulida as the sister group of a monophyletic Panarthropoda (Tardigrada plus Onychophora plus Arthropoda). The position of Tardigrada is more problematic, most likely because of long branch attraction (LBA). However, experiments designed to reduce LBA suggest that the most likely placement of Tardigrada is as a sister group of Onychophora. The same analyses also recover monophyly of traditionally recognized arthropod lineages such as Arachnida and of the highly debated clade Mandibulata. © The Author(s) 2010.

Radakovits R.,Colorado School of Mines | Jinkerson R.E.,Colorado School of Mines | Fuerstenberg S.I.,Genome Project Solutions Inc. | Tae H.,Virginia Polytechnic Institute and State University | And 4 more authors.
Nature Communications | Year: 2012

The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (∼29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga. © 2012 Macmillan Publishers Limited. All rights reserved.

Nardi F.,University of Siena | Carapelli A.,University of Siena | Boore J.L.,Genome Project Solutions Inc. | Roderick G.K.,University of California at Berkeley | And 2 more authors.
Molecular Phylogenetics and Evolution | Year: 2010

The evolutionary history of the olive fly, Bactrocera oleae, was reconstructed in a phylogenetic and coalescent framework using full mitochondrial genome data from 21 individuals covering the entire worldwide distribution of the species. Special attention was given to reconstructing the timing of the processes under study. The early subdivision of the olive fly reflects the Quaternary differentiation between Olea europea subsp. europea in the Mediterranean area and the two lineages of Olea europea subsp. cuspidata in Africa and Asia, pointing to an early and close association between the olive fly and its host. The geographic structure and timing of olive fly differentiation in the Mediterranean indicates a clear connection with the post-glacial recolonization of wild olives in the area, and is irreconcilable with the early historical process of domestication and spread of the cultivated olive from its Levantine origin. Therefore, we suggest an early co-history of the olive fly with its wild host during the Quaternary and post-glacial periods and a multi-regional shift of olive flies to cultivated olives as these cultivars gradually replaced wild olives in historical times. © 2010 Elsevier Inc.

Zhan S.,University of Massachusetts Medical School | Merlin C.,University of Massachusetts Medical School | Boore J.L.,Genome Project Solutions Inc. | Reppert S.M.,University of Massachusetts Medical School
Cell | Year: 2011

We present the draft 273 Mb genome of the migratory monarch butterfly (Danaus plexippus) and a set of 16,866 protein-coding genes. Orthology properties suggest that the Lepidoptera are the fastest evolving insect order yet examined. Compared to the silkmoth Bombyx mori, the monarch genome shares prominent similarity in orthology content, microsynteny, and protein family sizes. The monarch genome reveals a vertebrate-like opsin whose existence in insects is widespread; a full repertoire of molecular components for the monarch circadian clockwork; all members of the juvenile hormone biosynthetic pathway whose regulation shows unexpected sexual dimorphism; additional molecular signatures of oriented flight behavior; microRNAs that are differentially expressed between summer and migratory butterflies; monarch-specific expansions of chemoreceptors potentially important for long-distance migration; and a variant of the sodium/potassium pump that underlies a valuable chemical defense mechanism. The monarch genome enhances our ability to better understand the genetic and molecular basis of long-distance migration. © 2011 Elsevier Inc.

Loading Genome Project Solutions Inc. collaborators
Loading Genome Project Solutions Inc. collaborators