Entity

Time filter

Source Type

Halifax, Canada

Xue X.,Memorial University of Newfoundland | Feng C.Y.,Memorial University of Newfoundland | Hixson S.M.,Memorial University of Newfoundland | Johnstone K.,Genome Atlantic | And 3 more authors.
Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology | Year: 2014

For aquaculture to become sustainable, there is a need to substitute fish oil [FO, rich in ω3 long chain polyunsaturated fatty acids (LC-PUFA) such as 20:5ω3 (EPA) and 22:6ω3 (DHA)] in aquafeed with plant oils such as camelina oil [CO, rich in C18 PUFA such as 18:3ω3 (ALA) and 18:2ω6 (LNA)]. The LC-PUFA are essential components in fish diets for maintaining optimal health, physiology and growth. However, most marine fish including Atlantic cod are inefficient at producing LC-PUFA from shorter chain precursors. Since elovl genes encode enzymes that play key roles in fatty acid biosynthesis, we hypothesized that they may be involved in Atlantic cod responses to diets rich in 18:3ω3 and 18:2ω6. Ten members of the cod elovl gene family were characterized at the mRNA level. RT-PCR was used to study constitutive expression of elovl transcripts in fifteen tissues. Some transcripts (e.g. elovl5) were ubiquitously expressed, while others had tissue-specific expression (e.g. elovl4a in brain and eye). Cod fed a CO-containing diet (100% CO replacement of FO and including solvent-extracted fish meal) had significantly lower weight gain, with significant up-regulation of elovl5 and fadsd6 transcripts in the liver as shown by QPCR analysis, compared with cod on a FO control diet after a 13-week trial. Multivariate statistical analyses (SIMPER and PCA) indicated that high 18:3ω3 and/or low ω3 LC-PUFA levels in the liver were associated with the up-regulation of elovl5 and fadsd6, which are involved in LC-PUFA biosynthesis in cod. © 2014 Elsevier Inc.


Murray H.M.,Institute for Marine Biosciences | Murray H.M.,Scotian Halibut Ltd | Lall S.P.,Institute for Marine Biosciences | Rajaselvam R.,Genome Atlantic | And 8 more authors.
Marine Biotechnology | Year: 2010

An experimental microdiet prepared using an internal gelation method was used to partially replace the traditional live feed (Artemia) for larval Atlantic halibut, Hippoglossus hippoglossus L. Three trials were conducted with microdiet introduced at 20, 32, and 43 days post first feeding and larvae were sampled at approximately 2, 13, 23, and 33 days after microdiet introduction in each trial. The success of feeding was assessed by morphometrics and histological analysis of gut contents. Microdiet particles were readily consumed after a period of adaptation and provided an adequate source of nutrients with no significant increase in mortality in the microdiet-fed group compared to the control group. However, growth was limited and there was an increased incidence of malpigmentation of the eye and skin. Subtle changes in underlying digestive and developmental physiology were revealed by microarray analysis of RNA from control and experimental fish given microdiet from day 20 post first feeding. Fifty-eight genes were differentially expressed over the four sampling times in the course of the trial and the 28 genes with annotated functions fell into five major categories: metabolism and biosynthesis, cell division and proliferation, protein trafficking, cell structure, and stress. Interestingly, several of these genes were involved in pigmentation and eye development, in agreement with the phenotypic abnormalities seen in the larvae. © 2009 Her Majesty the Queen in Right of Canada, as represented by the National Research Council of Canada.


Murray H.M.,National Research Council Canada | Lall S.P.,National Research Council Canada | Rajaselvam R.,Genome Atlantic | Boutilier L.A.,Genome Atlantic | And 6 more authors.
Aquaculture | Year: 2010

Aquaculture feeds for carnivorous finfish species have been dependent upon the use of fish meal as the major source of dietary protein; however, the increasing demands upon the finite quantity of this high-quality protein source requires that feeds become increasingly comprised of alternative plant and/or animal protein. Soybean meal has been has been used to partially replace fish meal in the diets of several fish but it is known to cause enteritis in Atlantic salmon, Salmo salar. We have compared two groups of juvenile (207.2 ± 6.6 g) Atlantic halibut, Hippoglossus hippoglossus, L., fed diets containing fish meal (FM; control) or 30% soybean meal (SBM; experimental) as a protein source for 3 weeks. No detectable difference in feed intake or palatability was evident with the SBM diet relative to the FM diet. Histological examination of the distal intestine was performed to examine leukocyte infiltration of the lamina propria and other changes in morphology commonly observed with soybean-induced enteritis of salmonids. No significant difference was found between fish fed the FM and SBM diets. Global gene expression profiling performed using a high-density oligonucleotide microarray containing 9260 unique features, printed in quadruplicate, from Atlantic halibut revealed subtle underlying changes in the expression of several immune genes and genes involved in muscle formation, lipid transport, xenobiotic detoxification, digestion and intermediary metabolism. These results indicate that SBM can be used successfully as a replacement for animal protein in diet for juvenile Atlantic halibut, although long-term effects on the immune system may ensue. Crown Copyright © 2009.


Booman M.,Memorial University of Newfoundland | Borza T.,Genome Atlantic | Feng C.Y.,Memorial University of Newfoundland | Hori T.S.,Memorial University of Newfoundland | And 13 more authors.
Marine Biotechnology | Year: 2011

The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research. © 2010 The Author(s).

Discover hidden collaborations