Time filter

Source Type

Brooklyn Park, MN, United States

Gramer M.J.,Genmab MN Inc. | Eckblad J.J.,Genmab MN Inc. | Donahue R.,Genmab MN Inc. | Brown J.,Genmab MN Inc. | And 6 more authors.
Biotechnology and Bioengineering | Year: 2011

Through process transfer and optimization for increased antibody production to 3g/L for a GS-CHO cell line, an undesirable drop in antibody Fc galactosylation was observed. Uridine (U), manganese chloride (M), and galactose (G), constituents involved in the intracellular galactosylation process, were evaluated in 2-L bioreactors for their potential to specifically increase antibody galactosylation. These components were placed in the feed medium at proportionally increasing concentrations from 0 to 20× UMG, where a 1× concentration of U was 1mM, a 1× concentration of M was 0.002mM, and a 1× concentration of G was 5mM. Antibody galactosylation increased rapidly from 3% at 0× UMG up to 21% at 8× UMG and then more slowly to 23% at 20× UMG. The increase was primarily due to a shift from G0F to G1F, with minimal impact on other glycoforms or product quality attributes. Cell culture performance was largely not impacted by addition of up to 20× UMG except for suppression of glucose consumption and lactate production at 16 and 20× UMG and a slight drop in antibody concentration at 20× UMG. Higher accumulation of free galactose in the medium was observed at 8× UMG and above, coincident with achieving the plateau of maximal galactosylation. A concentration of 4× UMG resulted in achieving the target of 18% galactosylation at 2-L scale, a result that was reproduced in a 1,000-L run. Follow-up studies to evaluate the addition of each component individually up to 12× concentration revealed that the effect was synergistic; the combination of all three components gave a higher level of galactosylation than addition of the each effect independently. The approach was found generally useful since a second cell line responded similarly, with an increase in galactosylation from 5% to 29% from 0 to 8× UMG and no further increase or impact on culture performance up to 12× UMG. These results demonstrate a useful approach to provide exact and specific control of antibody galactosylation through manipulation of the concentrations of uridine, manganese chloride, and galactose in the cell culture medium. © 2011 Wiley Periodicals, Inc. Source

Discover hidden collaborations