Geneva Research Center

Genève, Switzerland

Geneva Research Center

Genève, Switzerland
Time filter
Source Type

Bachelerie F.,University Paris - Sud | Ben-Baruch A.,Tel Aviv University | Burkhardt A.M.,University of California at Irvine | Combadiere C.,French Institute of Health and Medical Research | And 20 more authors.
Pharmacological Reviews | Year: 2014

Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seventransmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.

Appelqvist H.,Linköping University | Johansson A.-C.,Linköping University | Linderoth E.,Linköping University | Linderoth E.,University College London | And 5 more authors.
Annals of Clinical and Laboratory Science | Year: 2012

Bax-mediated permeabilization of the outer mitochondrial membrane and release of apoptogenic factors into the cytosol are key events that occur during apoptosis. Likewise, apoptosis is associated with permeabilization of the lysosomal membrane and release of lysosomal cathepsins into the cytosol. This report identifies proteolytically active cathepsin D as an important component of apoptotic signaling following lysosomal membrane permeabilization in fibroblasts. Lysosome-mediated cell death is associated with degradation of Bax sequestering 14-3-3 proteins, cleavage of the Bax activator Bid, and translocation of Bax to mitochondria, all of which were cathepsin D-dependent. Processing of Bid could be reproduced by enforced lysosomal membrane permeabilization, using the lysosomotropic detergent O-methyl-serine dodecylamine hydrochloride (MSDH). We identified three cathepsin D-specific cleavage sites in Bid, Phe24, Trp48, and Phe183. Cathepsin D-cleaved Bid induced Bax-mediated release of cytochrome c from purified mitochondria, indicating that the fragments generated are functionally active. Moreover, apoptosis was associated with cytosolic acidification, thereby providing a more favorable environment for the cathepsin Dmediated cleavage of Bid. Our study suggests that cytosolic cathepsin D triggers Bax-mediated cytochrome c release by proteolytic activation of Bid. © 2012 by the Association of Clinical Scientists, Inc.

Castor M.G.M.,Federal University of Minas Gerais | Rezende B.,Federal University of Minas Gerais | Resende C.B.,Federal University of Minas Gerais | Alessandri A.L.,Federal University of Minas Gerais | And 8 more authors.
Journal of Immunology | Year: 2010

CCL3 is a protein of the CC chemokine family known to be important for T cell recruitment in inflammatory diseases. The aim of the current study was to evaluate the effects and putative mechanism of action of evasin-1, a novel CCL3-binding protein, in the pathogenesis of acute graft-versus-host disease (GVHD). GVHD was induced by the transplantation of splenocytes from C57BL/6J to B6D2F1 mice. Treatment of recipient mice with evasin-1 prevented mortality associated with GVHD. This was correlated with reduced weight loss and clinical disease severity. Analysis of the small intestine showed that evasin-1 treatment reduced the histopathological score and decreased levels of IFN-γ and CCL5. Mechanistically, evasin-1 treatment reduced the number of CD4+ and CD8+ T cells infiltrating the small intestine, as assessed by immunohistochemistry, and the adhesion of leukocytes to intestinal venules of recipient mice, as assessed by intravital microscopy. Evasin-1 was also able to decrease liver damage, as seen by reduction of inflammatory infiltrate and IFN-γ levels. Treatment with evasin-1 did not interfere with graft-versus-leukemia. Altogether, our studies demonstrate that CCL3 plays a major role in mediating GVHD, but not graft-versus-leukemia in mice and suggest that blockade of CCL3 with evasin-1 has potential therapeutic application in patients undergoing bone marrow transplantation. Copyright © 2010 by The American Association of Immunologists, Inc.

Fischer I.,Geneva Research Center | Alliod C.,Geneva Research Center | Martinier N.,Geneva Research Center | Newcombe J.,University College London | And 2 more authors.
PLoS ONE | Year: 2011

Background: Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor subtype 3 (S1P 3) signaling and SphK1 in activated rat astrocytes has not been defined. Methodology/Principal Findings: Using immunohistochemistry we observed the upregulation of S1P 3 and SphK1 expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P 3 and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole. Treatment of astrocytes with a selective S1P 3 agonist led to increased phosphorylation of extracellular signal-regulated kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P 3 upregulation can lead to increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A more prominent role of S1P 3 signaling compared to S1P 1 signaling was demonstrated by the use of selective S1P 3 or S1P 1 agonists. Conclusion/Significance: In summary, our data demonstrate that the SphK1/S1P 3 signaling axis is upregulated when astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or beneficial through increased remyelination via CXCL1. © 2011 Fischer et al.

Brynedal B.,The MS research group | Wojcik J.,Geneva Research Center | Esposito F.,San Raffaele Hospital | Debailleul V.,Geneva Research Center | And 6 more authors.
Journal of Neuroimmunology | Year: 2010

Multiple Sclerosis (MS) is a genetically complex immune mediated, demyelinating disease of the central nervous system. To date no genetic variants have been unambiguously linked to disease severity. We have conducted a genome wide screen, using Affymetrix Genechip® 500K technology, for severity in 1040 MS patients. Two markers within MGAT5, a gene coding for a glycosylation enzyme, were found to be significantly associated with outcome in the screening as well as in an independent population (combined p-values: 2.8 × 10- 6 and 1.5 × 10- 7). © 2010 Elsevier B.V. All rights reserved.

Huang J.K.,University of Cambridge | Ferrari C.C.,University of Cambridge | Monteiro De Castro G.,University of Cambridge | Monteiro De Castro G.,Federal University of São Paulo | And 6 more authors.
American Journal of Pathology | Year: 2012

Protein tyrosine phosphatase receptor type Z (Ptprz) is widely expressed in the mammalian central nervous system and has been suggested to regulate oligodendrocyte survival and differentiation. We investigated the role of Ptprz in oligodendrocyte remyelination after acute, toxin-induced demyelination in Ptprz null mice. We found neither obvious impairment in the recruitment of oligodendrocyte precursor cells, astrocytes, or reactive microglia/macrophage to lesions nor a failure for oligodendrocyte precursor cells to differentiate and remyelinate axons at the lesions. However, we observed an unexpected increase in the number of dystrophic axons by 3 days after demyelination, followed by prominent Wallerian degeneration by 21 days in the Ptprz-deficient mice. Moreover, quantitative gait analysis revealed a deficit of locomotor behavior in the mutant mice, suggesting increased vulnerability to axonal injury. We propose that Ptprz is necessary to maintain central nervous system axonal integrity in a demyelinating environment and may be an important target of axonal protection in inflammatory demyelinating diseases, such as multiple sclerosis and periventricular leukomalacia. © 2012 American Society for Investigative Pathology.

Grouls C.,RWTH Aachen | Hatting M.,RWTH Aachen | Rix A.,RWTH Aachen | Pochon S.,Geneva Research Center | And 6 more authors.
Radiology | Year: 2013

Purpose: To investigate the ability of vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted ultrasonographic (US) microbubbles for the assessment of liver dysplasia in transgenic mice. Materials and Methods: Animal experiments were approved by the governmental review committee. Nuclear factor-kB essential modulator knock-out mice with liver dysplasia and wild-type mice underwent liver imaging by using a clinical US system. Two types of contrast agents were investigated: nontargeted, commercially available, second-generation microbubbles (SonoVue) and clinically translatable PEGylated VEGFR2-targeted microbubbles (BR55). Microbubble kinetics was investigated over the course of 4 minutes. Targeted contrast material-enhanced US signal was quantified 5 minutes after injection. Competitive in vivo binding experiments with BR55 were performed in knock-out mice. Immunohistochemical and hematoxylin-eosin staining of liver sections was performed to validate the in vivo US results. Groups were compared by using the Mann-Whitney test. Results: Peak enhancement after injection of SonoVue and BR55 did not differ in healthy and dysplastic livers (SonoVue, P = .46; BR55, P = .43). Accordingly, immunohistochemical findings revealed comparable vessel densities in both groups. The specificity of BR55 to VEGFR2 was proved by in vivo competition (P = .0262). While the SonoVue signal decreased similarly in healthy and dysplastic livers during the 4 minutes, there was an accumulation of BR55 in dysplastic livers compared with healthy ones. Furthermore, targeted contrast-enhanced US signal indicated a significantly higher site-specific binding of BR55 in dysplastic than healthy livers (P = .005). Quantitative immunohistologic findings confirmed significantly higher VEGFR2 levels in dysplastic livers (P = .02). Conclusion: BR55 enables the distinction of early stages of liver dysplasia from normal liver. © RSNA, 2013.

Li T.,Indiana University | Brustovetsky T.,Indiana University | Antonsson B.,Geneva Research Center | Brustovetsky N.,Indiana University
Biochimica et Biophysica Acta - Bioenergetics | Year: 2010

In the present study, we compared alkali-resistant BAX insertion into the outer mitochondrial membrane, mitochondrial remodeling, mitochondrial membrane potential changes, and cytochrome c (Cyt c) release from isolated brain mitochondria triggered by recombinant BAX oligomerized with 1% octyl glucoside (BAXoligo) and by a combination of monomeric BAX (BAXmono) and caspase 8-cleaved C-terminal fragment of recombinant BID (truncated BID, tcBID). We also examined whether the effects induced by BAXoligo or by BAXmono activated with tcBID depended on induction of the mitochondrial permeability transition. The results obtained in this study revealed that tcBID plus BAXmono produced BAX insertion and Cyt c release without overt changes in mitochondrial morphology. On the contrary, treatment of mitochondria with BAXoligo resulted in BAX insertion and Cyt c release, which were accompanied by gross distortion of mitochondrial morphology. The effects of BAXoligo could be at least partially suppressed by mitochondrial depolarization. The effects of tcBID plus BAXmono were insensitive to depolarization. BAXoligo produced similar BAX insertion, mitochondrial remodeling, and Cyt c release in KCl- and in N-methyl-d-glucamine-based incubation media indicating a non-essential role for K+ influx into mitochondria in these processes. A combination of cyclosporin A and ADP, inhibitors of the mitochondrial permeability transition, attenuated Cyt c release, mitochondrial remodeling, and depolarization induced by BAXoligo, but failed to influence the effects produced by tcBID plus BAXmono. Thus, our results suggest a significant difference in the mechanisms of the outer mitochondrial membrane permeabilization and Cyt c release induced by detergent-oligomerized BAXoligo and by BAX activated with tcBID. © 2009 Elsevier B.V. All rights reserved.

Brustovetsky T.,Indiana University | Li T.,Indiana University | Yang Y.,Indiana University | Zhang J.-T.,Indiana University | And 2 more authors.
Biochimica et Biophysica Acta - Bioenergetics | Year: 2010

BAX cooperates with truncated BID (tBID) and Ca2+ in permeabilizing the outer mitochondrial membrane (OMM) and releasing mitochondrial apoptogenic proteins. The mechanisms of this cooperation are still unclear. Here we show that in isolated brain mitochondria, recombinant BAX readily self-integrates/oligomerizes in the OMM but produces only a minuscule release of cytochrome c, indicating that BAX insertion/oligomerization in the OMM does not always lead to massive OMM permeabilization. Ca2+ in a mitochondrial permeability transition (mPT)-dependent and recombinant tBID in an mPT-independent manner promoted BAX insertion/ oligomerization in the OMM and augmented cytochrome c release. Neither tBID nor Ca2+ induced BAX oligomerization in the solution without mitochondria, suggesting that BAX oligomerization required interaction with the organelles and followed rather than preceded BAX insertion in the OMM. Recombinant Bcl-xL failed to prevent BAX insertion/oligomerization in the OMM but strongly attenuated cytochrome c release. On the other hand, a reducing agent, dithiothreitol (DTT), inhibited BAX insertion/oligomerization augmented by tBID or Ca2+ and suppressed the BAX-mediated release of cytochrome c and Smac/DIABLO but failed to inhibit Ca2+-induced swelling. Altogether, these data suggest that in brain mitochondria, BAX insertion/oligomerization can be dissociated from OMM permeabilization and that tBID and Ca2+ stimulate BAX insertion/oligomerization and BAX-mediated OMM permeabilization by different mechanisms involving mPT induction and modulation of the SH-redox state. © 2010 Elsevier B.V.

Nellen A.,RWTH Aachen | Heinrichs D.,RWTH Aachen | Berres M.-L.,RWTH Aachen | Sahin H.,RWTH Aachen | And 4 more authors.
PLoS ONE | Year: 2012

Background: The chemokine CCL5 is involved in the recruitment of immune cells and a subsequent activation of hepatic stellate cells (HSC) after liver injury. We here investigate whether inhibition of CCL5 oligomerization and glycosaminoglycan binding by a mutated CCL5 protein (44AANA47-CCL5) has the potential to ameliorate liver cell injury and fibrosis in vivo. Methodology: Liver injury was induced in C57BL/6 mice by intraperitoneal injection of carbon tetrachloride (CCl4) in an acute and a chronic liver injury model. Simultaneously, mice received either 44AANA47-CCL5 or vehicle. Liver cell necrosis and fibrosis was analyzed by histology, and measurement of serum transaminases and hydroxyproline. Intrahepatic mRNA expression of fibrosis and inflammation related genes were determined by quantitative RT-PCR and infiltration of immune cells was assessed by FACS analysis and immunocytochemistry. In vitro, HSC were stimulated with conditioned media of T-cell enriched splenocytes. Principal Findings: 44AANA47-CCL5 treated mice displayed a significantly reduced degree of acute liver injury (liver cell necrosis, transaminases) and fibrosis (Sirus red positive area and hydroxyproline content) compared to vehicle treated mice. Ameliorated fibrosis by 44AANA47-CCL5 was associated with a decreased expression of fibrosis related genes, decreased α-smoth muscle antigen (αSMA) and a reduction of infiltrating immune cells. In the acute model, 44AANA47-CCL5 treated mice displayed a reduced immune cell infiltration and mRNA levels of TNF, IL-1 and CCL3 compared to vehicle treated mice. In vitro, conditioned medium of T-cell enriched splenocytes of 44AANA47-CCL5 treated mice inhibited the chemotaxis and proliferation of HSC. Conclusions: The results provide evidence that inhibition of oligomerization and glycosaminoglycan binding of the chemokine CCL5 is a new therapeutic strategy for the treatment of acute and chronic liver injuries and represents an alternative to chemokine receptor antagonism. © 2012 Nellen et al.

Loading Geneva Research Center collaborators
Loading Geneva Research Center collaborators