Genetics Service

Sainte-Foy-lès-Lyon, France

Genetics Service

Sainte-Foy-lès-Lyon, France
Time filter
Source Type

Patten S.A.,University of Montréal | Margaritte-Jeannin P.,University Paris Diderot | Bernard J.-C.,Croix Rouge Francaise | Alix E.,Genetics Service | And 24 more authors.
Journal of Clinical Investigation | Year: 2015

Idiopathic scoliosis (IS) is a spine deformity that affects approximately 3% of the population. The underlying causes of IS are not well understood, although there is clear evidence that there is a genetic component to the disease. Genetic mapping studies suggest high genetic heterogeneity, but no IS disease-causing gene has yet been identified. Here, genetic linkage analyses combined with exome sequencing identified a rare missense variant (p.A446T) in the centriolar protein gene POC5 that cosegregated with the disease in a large family with multiple members affected with IS. Subsequently, the p.A446T variant was found in an additional set of families with IS and in an additional 3 cases of IS. Moreover, POC5 variant p.A455P was present and linked to IS in one family and another rare POC5 variant (p.A429V) was identified in an additional 5 cases of IS. In a zebrafish model, expression of any of the 3 human IS-associated POC5 variant mRNAs resulted in spine deformity, without affecting other skeletal structures. Together, these findings indicate that mutations in the POC5 gene contribute to the occurrence of IS.

Lefebvre M.,University of Burgundy | Sanlaville D.,Genetics Service | Marle N.,University of Burgundy | Thauvin-Robinet C.,University of Burgundy | And 51 more authors.
Clinical Genetics | Year: 2016

Microarray-based comparative genomic hybridization (aCGH) is commonly used in diagnosing patients with intellectual disability (ID) with or without congenital malformation. Because aCGH interrogates with the whole genome, there is a risk of being confronted with incidental findings (IF). In order to anticipate the ethical issues of IF with the generalization of new genome-wide analysis technologies, we questioned French clinicians and cytogeneticists about the situations they have faced regarding IF from aCGH. Sixty-five IF were reported. Forty corresponded to autosomal dominant diseases with incomplete penetrance, 7 to autosomal dominant diseases with complete penetrance, 14 to X-linked diseases, and 4 were heterozygotes for autosomal recessive diseases with a high prevalence of heterozygotes in the population. Therapeutic/preventive measures or genetic counselling could be argued for all cases except four. These four IF were intentionally not returned to the patients. Clinicians reported difficulties in returning the results in 29% of the cases, mainly when the question of IF had not been anticipated. Indeed, at the time of the investigation, only 48% of the clinicians used consents mentioning the risk of IF. With the emergence of new technologies, there is a need to report such national experiences; they show the importance of pre-test information on IF. © 2016 John Wiley & Sons A/S.

Bustamante-Aragones A.,Genetics Service | Rodriguez de Alba M.,Genetics Service | Perlado S.,Genetics Service | Trujillo-Tiebas M.J.,Genetics Service | And 4 more authors.
Gene | Year: 2012

Prenatal diagnosis (PD) is available for pregnancies at risk of monogenic disorders. However, PD requires the use of invasive obstetric techniques for fetal-sample collection and therefore, involves a risk of fetal loss. Circulating fetal DNA in the maternal bloodstream is being used to perform non-invasive prenatal diagnosis (NIPD). NIPD is a challenging discipline because of the biological features of the maternal blood sample. Maternal blood is an unequal mixture of small (and fragmented) amounts of fetal DNA within a wide background of maternal DNA. For this reason, initial NIPD studies have been based on the analysis of specific paternally inherited fetal tracts not present in the maternal genome so as to ensure their fetal origin. Following this strategy, different NIPD studies have been carried out, such as fetal-sex assessment for pregnancies at risk of X-linked disorders, RhD determination, and analysis of single-gene disorders with a paternal origin. The study of the paternal mutation can be used for fetal diagnosis of dominant disorders or to more accurately assess the risk of an affected child in case of recessive diseases. Huntington's disease, cystic fibrosis, or achondroplasia are some examples of diseases studied using NIPD. New technologies are opening NIPD to the analysis of maternally inherited fetal tracts. NIPD of trisomy 21 is the latest study derived from the use of next-generation sequencing (NGS). © 2012 Elsevier B.V.

PubMed | Assisted Reproduction Unit and Genetics Service
Type: Journal Article | Journal: Journal of clinical medicine | Year: 2015

Prenatal diagnosis (PD) is recommended in pregnancies after a Preimplantation Genetic Diagnosis (PGD). However, conventional PD entails a risk of fetal loss which makes PGD patients reluctant to undergo obstetric invasive procedures. The presence of circulating fetal DNA in maternal blood allows performing a non-invasive prenatal diagnosis (NIPD) without risk for the pregnancy outcome. This work shows the introduction of NIPD for confirmation of PGD results in eight pregnancies. In those pregnancies referred to PGD for an X-linked disorder (six out of eight), fetal sex determination in maternal blood was performed to confirm fetal sex. One pregnancy referred to PGD for Marfan syndrome and one referred for Huntington disease (HD) were also analyzed. In seven out of eight cases, PGD results were confirmed by NIPD in maternal blood. No results were obtained in the HD pregnancy. NIPD in PGD pregnancies can be a reliable alternative for couples that after a long process feel reluctant to undergo PD due to the risk of pregnancy loss.

Loading Genetics Service collaborators
Loading Genetics Service collaborators