Entity

Time filter

Source Type


Li C.,Genetic and Metabolic Central Laboratory | Chen R.,Genetic and Metabolic Central Laboratory | Fan X.,Genetic and Metabolic Central Laboratory | Luo J.,Genetic and Metabolic Central Laboratory | And 7 more authors.
BMC Medical Genetics | Year: 2015

Background: Waardenburg syndrome type I (WS1), an auditory-pigmentary genetic disorder, is caused by heterozygous loss-of-function mutations in PAX3. Abnormal physical signs such as dystopia canthorum, patchy hypopigmentation and sensorineural hearing loss are common, but short stature is not associated with WS1. Case presentation: We reported a 4-year and 6 month-old boy with a rare combination of WS1 and severe short stature (83.5 cm (-5.8SD)). His facial features include dystopia canthorum, mild synophrys, slightly up-slanted palpebral fissure, posteriorly rotated ears, alae nasi hypoplasia and micrognathia. No heterochromia was noticed. He had a normal intelligence quotient and hearing. Insulin-like growth factor-1 (IGF-1) was 52.7 ng/ml, lower than the normal range (55 ~ 452 ng/ml) and the peak growth hormone level was 7.57 ng/ml at 90 minutes after taking moderate levodopa and pyridostigmine bromide. The patient exhibited a good response to human growth hormone (rhGH) replacement therapy, showing a 9.2 cm/year growth rate and an improvement of 1 standard deviation (SD) of height after one year treatment. CMA test of patient's DNA revealed a 4.46 Mb de novo deletion at 2q35-q36.2 (hg19; chr2:221,234,146-225,697,363). Conclusions: PAX3 haploinsufficiency is known to cause Waardenburg syndrome. Examining overlapping deletions in patients led to the conclusion that EPHA4 is a novel short stature gene. The finding is supported by the splotch-retarded and epha4 knockout mouse models which both showed growth retardation. We believe this rare condition is caused by the haploinsufficiency of both PAX3 and EPH4 genes. We further reported a growth response to recombinant human growth hormone treatment in this patient. © Li et al.; licensee BioMed Central Ltd. Source


Hu X.,Genetic and Metabolic Central Laboratory | Hu X.,Shanghai JiaoTong University | Chen R.,Genetic and Metabolic Central Laboratory | Fu C.,Genetic and Metabolic Central Laboratory | And 19 more authors.
Molecular and Cellular Endocrinology | Year: 2016

Mutations in Thyroglobulin (TG) are common genetic causes of congenital hypothyroidism (CH). But the TG mutation spectrum and its frequency in Chinese CH patients have not been investigated. Here we conducted a genetic screening of TG gene in a cohort of 382 Chinese CH patients. We identified 22 rare non-polymorphic variants including six truncating variants and 16 missense variants of unknown significance (VUS). Seven patients carried homozygous pathogenic variants, and three patients carried homozygous or compound heterozygous VUS. 48 out of 382 patients carried one of 18 heterozygous VUS which is significantly more often than their occurrences in control cohort (P < 0.0001). Unique to Asian population, the c.274+2T>G variant is the most common pathogenic variant with an allele frequency of 0.021. The prevalence of CH due to TG gene defect in Chinese population was estimated to be approximately 1/101,000. Our study uncovered ethnicity specific TG mutation spectrum and frequency. © 2016 Elsevier Ireland Ltd. Source

Discover hidden collaborations