Entity

Time filter

Source Type


Patent
Genesis Photonics. Inc. | Date: 2015-12-03

A method for manufacturing a light emitting unit is provided. A semiconductor structure including a plurality of light emitting dice separated from each other is provided. A molding compound is formed to encapsulate the light emitting dice. Each of the light emitting dice includes a light emitting element, a first electrode and a second electrode. A patterned metal layer is formed on the first electrodes and the second electrodes of the light emitting dice. A substrate is provided, where the molding compound is located between the substrate and the light emitting elements of the light emitting dice. A cutting process is performed to cut the semiconductor structure, the patterned metal layer, the molding compound and the substrate so as to define a light emitting unit with a series connection loop, a parallel connection loop or a series-parallel connection loop.


Patent
Genesis Photonics. Inc. | Date: 2015-04-12

A lamp structure is disclosed. The lamp structure includes: a lamp cover having a bottom side and light-emitting side opposing to the bottom side, a reflection layer being disposed on the bottom layer; a substrate disposed on the bottom side of the lamp cover; at least one light-emitting unit disposed on the substrate to emit a plurality of light beams; and a reflection member disposed above the light-emitting unit. The light beams are at least reflected by the reflection layer of the lamp cover, and are emitted from the light-emitting side of the lamp cover.


Patent
Genesis Photonics. Inc. | Date: 2015-10-21

The present invention relates to a light emitting diode (LED) and a flip-chip packaged LED device. The present invention provides an LED device. The LED device is flipped on and connected electrically with a packaging substrate and thus forming the flip-chip packaged LED device. The LED device mainly has an Ohmic-contact layer and a planarized buffer layer between a second-type doping layer and a reflection layer. The Ohmic-contact layer improves the Ohmic-contact characteristics between the second-type doping layer and the reflection layer without affecting the light emitting efficiency of the LED device and the flip-chip packaged LED device. The planarized buffer layer id disposed between the Ohmic-contact layer and the reflection layer for smoothening the Ohmic-contact layer and hence enabling the reflection layer to adhere to the planarized buffer layer smoothly. Thereby, the reflection layer can have the effect of mirror reflection and the scattering phenomenon on the reflected light can be reduced as well.


Patent
Genesis Photonics. Inc. | Date: 2015-10-21

The present invention relates to a light emitting diode (LED) and a flip-chip packaged LED device. The present invention provides an LED device. The LED device is flipped on and connected electrically with a packaging substrate and thus forming the flip-chip packaged LED device. The LED device mainly has an Ohmic-contact layer and a planarized buffer layer between a second-type doping layer and a reflection layer. The Ohmic-contact layer improves the Ohmic-contact characteristics between the second-type doping layer and the reflection layer without affecting the light emitting efficiency of the LED device and the flip-chip packaged LED device. The planarized buffer layer id disposed between the Ohmic-contact layer and the reflection layer for smoothening the Ohmic-contact layer and hence enabling the reflection layer to adhere to the planarized buffer layer smoothly. Thereby, the reflection layer can have the effect of mirror reflection and the scattering phenomenon on the reflected light can be reduced as well.


Patent
Genesis Photonics. Inc. | Date: 2015-04-28

A light emitting diode (LED) package structure including a carrier substrate, a LED and an electrostatic protection device is provided. The carrier substrate includes two leadframes separated from each other and a reflective member. The reflective member encapsulates the leadframes and exposes a carrier surface of each of the leadframes. The reflective member has a cavity, and a bottom surface of the cavity is aligned with the carrier surface of each of the leadframes. The LED is disposed inside the cavity and bridges the leadframes. The electrostatic protection device is disposed inside the cavity and bridges the leadframes. The LED is connected in anti-parallel to the electrostatic protection device.

Discover hidden collaborations