Cincinnati, OH, United States
Cincinnati, OH, United States

Time filter

Source Type

Grant
Agency: Department of Defense | Branch: Navy | Program: STTR | Phase: Phase I | Award Amount: 100.00K | Year: 2011

Success growing long carbon nanotube arrays rests on the preparation of the catalytic substrate. Current best practices use a sputtering, oxidization, evaporation and annealing process to form catalyst particles. This natural self-assembly method is not the best approach. It creates substrates with too many variations, causing nanotubes to grow at different rates, lengths, and diameters, and causing defects and preventing nanotube arrays from achieving their growth potential. Proposed is a new nanomanufacturing approach - Substrate Engineering. In this approach, the catalytic substrate is designed to produce carbon nanotube arrays with a desired morphology. Van der Waals force engineering is used to optimize the geometry of catalyst wells. Chirality control will be attempted by matching catalyst well size to the diameter of armchair nanotubes. Novel techniques will be used to fabricate the substrate. Nanoimprint lithography will pattern the alumina buffer layer on the substrate with catalyst wells the same size throughout the substrate. Laser drilled holes in thin substrates will enable a new base flow chemical vapor deposition method to be used in conjunction with the patterned catalyst. Combinatorial studies using different mold patterns will determine the diameter, depth, and spacing of wells that produce long, high-quality nanotube arrays. It is anticipate that nanotube arrays produced from engineered substrates will permit advanced devices with the energy and power to outperform incumbent materials.


Grant
Agency: Department of Defense | Branch: Navy | Program: STTR | Phase: Phase II | Award Amount: 499.76K | Year: 2012

General Nano's Phase II proposal is centered around low cost, high volume manufacturing of Carbon Nanotube (CNT) arrays on stainless steel sheets. The proposed technology is the basis for application development projects involving structural reinforced composites, conductive composites, EMI shielding, stray light absorption, thermal interface materials, batteries and super-capacitors. Four of the highest caliber defense contractors in the United States have provided Letters of Support to validate their interest in General Nano"s materials and to communicate their perspective on the importance of this program. The core deliverables of the project are centered on controllable process manufacturing. For example, controlling the catalyst particle sizes on large area sheets, controlling the number of CNT walls based on application requirements, and controlling CNT arrays densities and lengths over large areas involve nanomanufacturing and substrate engineering. Other objectives of this proposal include the conversion of long, aligned CNT arrays into free-standing sheets. CNT sheets with>1mm CNTs in an aligned arrangement has been demonstrated; this proposal will support the repeatable manufacturing of the proposed CNT sheet material. In summary, this proposal involves manufacturing CNT array materials using a large area stainless steel sheet process demonstrated in Phase I. This capability continues to attract the interest of the highest caliber defense contractors in the United States. Their interest involves integrating General Nano"s materials into applications that will enhance the electrical, thermal and/or mechanical performance of an application while reducing weight and extending the life of the application.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase I | Award Amount: 149.73K | Year: 2012

General Nano is the largest manufacture of Carbon Nanotube (CNT) arrays in the United States. General Nano proposes to leverage two of its proprietary CNT form factors to locally reinforce"hot spots"in composite structural applications. Provisional patents have been filed to protect both novel approaches. There are two primary objectives are the driving force behind General Nano"s technical work plan: (1) Improving properties at the fastener holes to achieve performance levels consistent with composite structure, and (2) cost containment. General Nano has teamed with a prime contractor, composite testing house, and University in Phase I.


Patent
General Nano, LLC | Date: 2012-02-01

A method using of electrostatic spraying or dispersing processes and techniques for depositing a particulate material onto the outside surfaces of carbon nanotubes (CNTs) and CNT elongates consisting of the CNTs. The particulate material can include either or both particles and droplets, and the material can be an element, compound or composition, including polymers and thermoplastics. The particulate material is dispersed and induced with a static charge, while the CNT elongate is grounded.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase II | Award Amount: 749.48K | Year: 2013

General Nano manufactures Carbon Nanotube (CNT) materials for aerospace and defense applications. In the phase I program, General Nano demonstrated the ability to improve the mechanical and electrical properties or existing laminated composites using a proprietary manufacturing method. General Nano's work in performed in partnership with a leading OEM and research institution.


Grant
Agency: Department of Defense | Branch: Air Force | Program: SBIR | Phase: Phase I | Award Amount: 149.06K | Year: 2013

ABSTRACT: Improving heat transfer and enhancing mechanical compliance at interfaces has significant impact on military and commercial applications. For example, silicon carbide power electronics operate at much higher temperatures (~250 oC) than their silicon counterparts (<~120 oC) and occupy smaller volumes. Unfortunately, with current thermal management techniques, decreased heat sink volume and air flow available for cooling associated with miniaturization of devices result in thermal management challenges. Mismatch of mechanical properties is also exacerbated by the broader range of component operating temperatures. New, thermal interface materials (TIMs) are needed to prolong the lifetime of high power electronic components, and can be accomplished in two ways: (1) Reducing the device junction temperature given an equivalent thermal management system and (2) accommodation of thermal strains at heterogeneous interfaces to inhibit mechanical failure. Our work plan is designed to develop new materials to address both challenges. We will investigate two different, macroscopic carbon nanotube (CNT) architecutresdouble sided vertically aligned arrays on foil substrates, and planar CNT-based paper materials. The materials will be decorated with nanoparticles designed to reduce acoustic mismatch and promote interfacial heat transfer, as well as enhance elastic recovery of the TIM after expansion and contraction associated with thermal cycling. BENEFIT: The primary benefits are performance improvements derived from enhanced thermal conductance and extreme mechanical compliance that will be stable over multiple thermal cycles. For example, we have developed CNT-based TIMS with<10 mm2 K W-1 at contact pressures of 0.2 MPa, resulting in potentially significant component lifetime (>3x) lifetime improvements. We have also characterized the mechanical response of CNT-based TIMs to cyclic compression, and observed remarkable elastic recovery in the native CNT materials. We believe the nanoparticles will further enhance mechanical compliance.


Grant
Agency: Department of Defense | Branch: Navy | Program: SBIR | Phase: Phase I | Award Amount: 79.50K | Year: 2013

This project will manufacture carbon nanotube(CNT) sensor/tape for use in distributed structural health monitoring(SHM) systems that will be integrated into/onto composite materials to provide damage detection, localization, and characterization. Composite test samples with internally integrated sensors will be built and evaluated to detect/locate multiple damage modes including fiber breakage and delamination. Analytical predictions of the damage magnitude and likely progression of detected flaws over time will be made. Composites with integrated CNT sensor thread/tape will have the following advantages: Self-Sensing- CNT piezoresistive thread can measure strain/damage, thread impedance decreases at high frequency increasing sensitivity Increased Strength- Composite strength will increase based on CNT volume fraction Damage Limiting- CNT thread has high strain to failure and will self-limit damage by absorbing strain energy Improved Transport- CNT thread has high thermal and electrical conductivity in-plane No Significant Added Weight or Size- There is almost no added mass of the sensor thread Modest Cost- Cost for the CNT materials and composites processing is modest Detection, Localization, and Characterization of Damage- Discerning between a crack and delamination will use a computer algorithm to map the shape of damage Improved Composites- Can determine failure progression in composites and provide understanding how to reinforce composites


Grant
Agency: Department of Defense | Branch: Air Force | Program: SBIR | Phase: Phase I | Award Amount: 99.77K | Year: 2011

Carbon Nanotube (CNT) technology has become a promising replacement for traditional copper, aluminum, and metallic based EMI shielding in power and data transmission cables. CNT materials offer the potential for significant weight reduction and improved mechanical performance. The proposed work plan encompasses a team that spans the entire cable and nanomaterial supply chain. Each team member will apply their individual core competencies to address the stated objective, which is to determine which type of cable(s) will be able to benefit from integrating nanomaterials. Specifically, the team will 1) integrate its proprietary CNT threads, ribbons, yarns and other derivative materials; 2) perform analysis and modeling, and 3) a technical and commercial feasibility assessment. BENEFIT: It is anticipated that the work performed in the proposed technical plan will result in identifying cables (e.g. data and/or power) that will benefit from replacing bulky metal-based EMI shielding with General Nano proprietary Carbon Nanotube (CNT) technology. By replacing incumbent metal-based materials with nanomaterials, significant weight reduction and improved mechanical performance will be achieved. Weight reduction yields major cost savings and improved mechanical performance yields improved form factor capabilities and durabilities.


Grant
Agency: National Aeronautics and Space Administration | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 99.88K | Year: 2011

The purpose of the proposal is to apply multifunctional carbon electromagnetic materials, including carbon nanotube electrical thread (replaces copper wire) and carbon nanosphere chain magnetic material (replaces iron cores), to build lightweight, high-performance carbon electric motors and actuators for aircraft and spacecraft. Incorporating these nanomaterials will replace heavy and bulky motors that are constrained by high mass and inertia, and limited rotor speed and acceleration.The technical objective is to achieve 50-70% weight reduction, super-inductance, extremely high magnetic fields, and potentially operate at high speed driven by AC signals in the tens of KHz frequency range. Additionally, large size pancake carbon motors could produce extreme torques and withstand the inertia forces of a large diameter rotor. Some of the trade-offs of the carbon motor may be lower efficiency, higher temperature operation or need for additional cooling, and higher initial cost. We will investigate these factors in Phase I. General Nano (GN) is one of two companies in the United State capable of manufacturing the nanomaterials required to pursue the carbon electric motors and actuators. GN will partner with Parker Hannifin to integrate the nanomaterials into commercial application.


Grant
Agency: Department of Defense | Branch: Air Force | Program: SBIR | Phase: Phase II | Award Amount: 1.17M | Year: 2014

ABSTRACT: General Nano is partnering with Top 3 prime to develop next generation composite systems for air vehicles. The core technology involves integrating lightweight, conductive CNT non-woven sheet materials into aerospace qualified prepreg. The program builds from initial Air Force SBIR investment in long Carbon Nanotube development and manufacturing. BENEFIT: Reduce parasitic weight and enable magnitudes of order improvement in electrical and thermal conductivity while also reducing manufacturing costs by reducing scrap. Air vehicles will get increased range, longer time on station, increased payload capacity, longer product lifetimes, and reduces manufacturing costs.

Loading General Nano, LLC collaborators
Loading General Nano, LLC collaborators