Time filter

Source Type

Beraldi R.,Mayo Medical School | Li X.,Mayo Medical School | Fernandez A.M.,Mayo Medical School | Reyes S.,Mayo Medical School | And 7 more authors.
Human Molecular Genetics | Year: 2014

Dilated cardiomyopathy (DCM) due to mutations in RBM20, a gene encoding an RNA-binding protein, is associated with high familial penetrance, risk of progressive heart failure and sudden death. Although genetic investigations and physiologicalmodels have established the linkage ofRBM20with early-onsetDCM, the underlying basis of cellularandmolecular dysfunction is undetermined.Modelinghumangenetics using a high-throughput pluripotent stem cell platform was herein designed to pinpoint the initial transcriptome dysfunction and mechanistic corruption in disease pathogenesis. Tnnt2-pGreenZeo pluripotent stem cells were engineered to knockdown Rbm20 (shRbm20) to determine the cardiac-pathogenic phenotype during cardiac differentiation. Intracellular Ca2+ transients revealed Rbm20-dependent alteration in Ca2+ handling, coinciding with known pathological splice variants of Titin and Camk2d genes by Day 24 of cardiogenesis. Ultrastructural analysis demonstrated elongated and thinner sarcomeres in the absence ofRbm20 that is consistent withhumancardiac biopsy samples. Furthermore, Rbm20-depleted transcriptional profiling at Day 12 identified Rbm20-dependent dysregulation with 76% of differentially expressed genes linked to known cardiac pathology ranging from primordial Nkx2.5 to mature cardiac Tnnt2 as the initial molecular aberrations. Notably, downstream consequences of Rbm20-depletion at Day 24 of differentiation demonstrated significant dysregulation of extracellular matrix components such as the anomalous overexpression of the Vtn gene. By using the pluripotent stem cell platform tomodelhuman cardiac disease according to a stage-specific cardiogenic roadmap, weestablished a newparadigm of familialDCMpathogenesis as a developmental disorder that is patterned duringearly cardiogenesis and propagated with cellular mechanisms of pathological cardiac remodeling. © The Author 2014. Published by Oxford University Press. All rights reserved. Source

Martinez-Fernandez A.,Center for Regenerative Medicine | Martinez-Fernandez A.,Marriott Heart Disease Research Program | Nelson T.J.,Center for Regenerative Medicine | Nelson T.J.,General Internal Medicine and Transplant Center | And 11 more authors.
Circulation: Cardiovascular Genetics | Year: 2014

Background: Nuclear reprogramming inculcates pluripotent capacity by which de novo tissue differentiation is enabled. Yet, introduction of ectopic reprogramming factors may desynchronize natural developmental schedules. This study aims to evaluate the effect of imposed transgene load on the cardiogenic competency of induced pluripotent stem (iPS) cells.Methods and Results: Targeted inclusion and exclusion of reprogramming transgenes (c-MYC, KLF4, OCT4, and SOX2) was achieved using a drug-inducible and removable cassette according to the piggyBac transposon/transposase system. Pulsed transgene overexpression, before iPS cell differentiation, hindered cardiogenic outcomes. Delayed in counterparts with maintained integrated transgenes, transgene removal enabled proficient differentiation of iPS cells into functional cardiac tissue. Transgene-free iPS cells generated reproducible beating activity with robust expression of cardiac a-actinin, connexin 43, myosin light chain 2a, a/ß-myosin heavy chain, and troponin I. Although operational excitation-contraction coupling was demonstrable in the presence or absence of transgenes, factor-free derivatives exhibited an expedited maturing phenotype with canonical responsiveness to adrenergic stimulation.Conclusions: A disproportionate stemness load, caused by integrated transgenes, affects the cardiogenic competency of iPS cells. Offload of transgenes in engineered iPS cells ensures integrity of cardiac developmental programs, underscoring the value of nonintegrative nuclear reprogramming for derivation of competent cardiogenic regenerative biologics. © 2014 American Heart Association, Inc. Source

Oommen S.,General Internal Medicine and Transplant Center | Oommen S.,Center for Regenerative Medicine | Oommen S.,Molecular Therapeutics | Yamada S.,Center for Regenerative Medicine | And 15 more authors.
Stem Cell Research and Therapy | Year: 2015

Abstract Introduction: Stem cell therapy has emerged as potential therapeutic strategy for damaged heart muscles. Umbilical cord blood (UCB) cells are the most prevalent stem cell source available, yet have not been fully tested in cardiac regeneration. Herein, studies were performed to evaluate the cardiovascular safety and beneficial effect of mononuclear cells (MNCs) isolated from human umbilical cord blood upon intramyocardial delivery in a murine model of right ventricle (RV) heart failure due to pressure overload. Methods: UCB-derived MNCs were delivered into the myocardium of a diseased RV cardiac model. Pulmonary artery banding (PAB) was used to produce pressure overload in athymic nude mice that were then injected intramyocardially with UCB-MNCs (0.4 × 10^6 cells/heart). Cardiac functions were then monitored by telemetry, echocardiography, magnetic resonance imaging (MRI) and pathologic analysis of heart samples to determine the ability for cell-based repair. Results: The cardio-toxicity studies provided evidence that UCB cell transplantation has a safe therapeutic window between 0.4 to 0.8 million cells/heart without altering QT or ST-segments or the morphology of electrocardiograph waves. The PAB cohort demonstrated significant changes in RV chamber dilation and functional defects consistent with severe pressure overload. Using cardiac MRI analysis, UCB-MNC transplantation in the setting of PAB demonstrated an improvement in RV structure and function in this surgical mouse model. The RV volume load in PAB-only mice was 24.09 ± 3.9 compared to 11.05 ± 2.09 in the cell group (mm3, P-value <0.005). The analysis of pathogenic gene expression (BNP, ANP, Acta1, Myh7) in the cell-transplanted group showed a significant reversal with respect to the diseased PAB mice with a robust increase in cardiac progenitor gene expression such as GATA4, Kdr, Mef2c and Nkx2.5. Histological analysis indicated significant fibrosis in the RV in response to PAB that was reduced following UCB-MNC's transplantation along with concomitant increased Ki-67 expression and CD31 positive vessels as a marker of angiogenesis within the myocardium. Conclusions: These findings indicate that human UCB-derived MNCs promote an adaptive regenerative response in the right ventricle upon intramyocardial transplantation in the setting of chronic pressure overload heart failure. © 2015 Oommen et al. Source

Discover hidden collaborations