Time filter

Source Type

Dai B.,Shanghai University | Wang Y.,Shanghai University | Li D.,Shanghai University | Xu Y.,General Hospital of Jinan Military Command Region | And 5 more authors.
PLoS ONE | Year: 2012

Candida albicans is the most common human fungal pathogen. Recent evidence has revealed the occurrence of apoptosis in C. albicans that is inducible by environmental stresses such as hydrogen peroxide, acetic acid, and amphotericin B. Apoptosis is regulated by the calcineurin-caspase pathway in C. albicans, and calcineurin is under the control of Hsp90 in echinocandin resistance. However, the role of Hsp90 in apoptosis of C. albicans remains unclear. In this study, we investigated the role of Hsp90 in apoptosis of C. albicans by using an Hsp90-compromised strain tetO-HSP90/hsp90 and found that upon apoptotic stimuli, including hydrogen peroxide, acetic acid or amphotericin B treatment, less apoptosis occurred, less ROS was produced, and more cells survived in the Hsp90-compromised strain compared with the Hsp90/Hsp90 wild-type strain. In addition, Hsp90-compromised cells were defective in up-regulating caspase-encoding gene CaMCA1 expression and activating caspase activity upon the apoptotic stimuli. Investigations on the relationship between Hsp90 and calcineurin revealed that activation of calcineurin could up-regulate apoptosis but could not further down-regulate apoptosis in Hsp90-compromised cells, indicating that calcineurin was downstream of Hsp90. Hsp90 inhibitor geldanamycin (GdA) could further decrease the apoptosis in calcineurin-pathway-defect strains, indicating that compromising Hsp90 function had a stronger effect than compromising calcineurin function on apoptosis. Collectively, this study demonstrated that compromised Hsp90 reduced apoptosis in C. albicans, partially through downregulating the calcineurin-caspase pathway. © 2012 Dai et al. Source

Liang R.-M.,General Hospital of Chengdu Military Command Region | Yong X.-L.,General Hospital of Chengdu Military Command Region | Duan Y.-Q.,General Hospital of Chengdu Military Command Region | Tan Y.-H.,General Hospital of Chengdu Military Command Region | And 8 more authors.
World Journal of Microbiology and Biotechnology | Year: 2014

It was found in the present study that combined use of fusidic acid (FA) and berberine chloride (BBR) offered an in vitro synergistic action against 7 of the 30 clinical methicillin-resistant Staphylococcus aureus (MRSA) strains, with a fractional inhibitory concentration (FIC) index ranging from 0.5 to 0.19. This synergistic effect was most pronounced on MRSA 4806, an FA-resistant isolate, with a minimum inhibitory concentration (MIC) value of 1,024 μg/ml. The time-kill curve experiment showed that FA plus BBR yielded a 4.2 log10 c.f.u./ml reduction in the number of MRSA 4806 bacteria after 24-h incubation as compared with BBR alone. Viable count analysis showed that FA plus BBR produced a 3.0 log10 c.f.u./ml decrease in biofilm formation and a 1.5 log10 c.f.u./ml decrease in mature biofilm in viable cell density as compared with BBR alone. In addition, phase contrast micrographs confirmed that biofilm formation was significantly inhibited and mature biofilm was obviously destructed when FA was used in combination with BBR. These results provide evidence that combined use of FA and BBR may prove to be a promising clinical therapeutic strategy against MRSA. © 2014, Springer Science+Business Media Dordrecht. Source

Liang R.M.,Pharmacy Development | Yong X.L.,General Hospital of Chengdu Military Command Region | Jiang Y.P.,General Hospital of Chengdu Military Command Region | Tan Y.H.,General Hospital of Chengdu Military Command Region | And 10 more authors.
FEBS Journal | Year: 2011

Candida infections have become an increasingly significant problem, mainly because of the widespread nature of Candida and drug resistance. There is an urgent need to develop new classes of drugs for the treatment of opportunistic Candida infections, especially in medically complex patients. Previous studies have confirmed that 2-amino-nonyl-6-methoxyl-tetralin muriate (10b) possesses powerful antifungal activity in vitro against Candia albicans. To clarify the underlying action mechanism, an oligonucleotide microarray study was performed in C. albicans SC5314 without and with 10b treatment. The analytical results showed that energy metabolism-related genes, including glycolysis-related genes (PFK1, CDC19 and HXK2), fermentation-related genes (PDC11, ALD5 and ADH1) and respiratory electron transport chain-related genes (CBP3, COR1 and QCR8), were downregulated significantly. Functional analysis revealed that 10b treatment increased the generation of endogenous reactive oxygen species, and decreased mitochondrial membrane potential, ubiquinone-cytochrome c reductase (complex III) activity and intracellular ATP levels in C. albicans SC5314. Also, addition of the antioxidant ascorbic acid reduced the antifungal activity of 10b significantly. These results suggest that mitochondrial aerobic respiration shift and endogenous reactive oxygen species augmentation might contribute to the antifungal activity of 10b against C. albicans. This information may prove to be useful for the development of new strategies to treat Candida infections. © 2011 The Authors Journal compilation © 2011 FEBS. Source

Discover hidden collaborations