Entity

Time filter

Source Type

North Vancouver, Canada

Sandberg R.D.,University of Southampton | Sandham N.D.,University of Southampton | Suponitsky V.,General Fusion Inc.
International Journal of Heat and Fluid Flow | Year: 2012

Direct numerical simulations were conducted of a fully turbulent canonical nozzle/jet configuration. For all cases, the target Reynolds number, based on the jet velocity and diameter, was specified as 7500 and the jet Mach number and coflow Mach number were varied. Turbulence statistics at the nozzle exit are shown to collapse with fully developed turbulent pipe flow profiles when using the wall shear-stress, and in the case of higher Mach number cases also the wall density, from the fully developed flow region upstream in the nozzle. Predictions of flow variables in the near-nozzle region obtained from asymptotic theory are found to agree qualitatively with Direct Numerical Simulation data. The data from the different cases are shown to collapse in the potential core region when scaling with the appropriate mixing layer parameter while further downstream the appropriate parameter is the non-dimensional local velocity excess. For all scalings investigated, including virtual-origin correction of the streamwise axis, the case with the highest coflow magnitude did not agree well with the other cases implying that self-similarity of coflowing jets is restricted to low coflow values. Finally, it is shown that the acoustic field is resolved by the simulations making the data suitable for subsequent aeroacoustic analysis. © 2012 Elsevier Inc. Source


Patent
General Fusion Inc. | Date: 2014-02-07

Examples of a pressure wave generator configured to generate high energy pressure waves in a medium are disclosed. The pressure wave generator can include a sabot carrying a piston. The sabot can further comprise a locking means to lock the piston in a fixed position when the locking means are activated. When the locking means are in a deactivated position, the piston can be released and can move at least partially away from the sabot. The sabot carrying the piston can be disposed within an inner bore of a housing of the pressure wave generator and can move within the inner bore of the housing from its first end toward its second end along a longitudinal axis of the bore. A transducer can be accommodated in the second end of the housing. The transducer can be coupled to the medium and can convert a portion of the kinetic energy of the piston into a pressure wave in the medium upon impact of the piston with the transducer. The sabot carrying the piston can be accelerated by applying a motive force to the sabot. Once accelerated within the inner bore of the housing the sabot can be decelerated by applying a restraining force to the sabot while the piston can be released at least partially from the sabot to continue to move toward the transducer until it impacts the transducer. Examples of methods of operating the pressure wave generator are disclosed.


Patent
General Fusion Inc. | Date: 2010-07-28

Embodiments of systems and methods for compressing plasma are disclosed in which plasma can be compressed by impact of a projectile on a magnetized plasma in a liquid metal cavity. The projectile can melt in the liquid metal cavity, and liquid metal may be recycled to form new projectiles.


Patent
General Fusion Inc. | Date: 2013-07-03

Embodiments of systems and methods for compressing plasma are described in which plasma pressures above the breaking point of solid material can be achieved by injecting a plasma into a funnel of liquid metal in which the plasma is compressed and/or heated.


Patent
General Fusion Inc. | Date: 2015-12-09

Examples of a jet control device are described. The jet control device can comprise a jet deflecting member that is configured to intercept and/or collide with a high speed jet emerging from a jet formation location. The interaction of the jet deflecting member and the jet can cause the high speed jet to be dispersed into a plurality of jets with a number of flow directions which may be sideways to an initial direction of the high speed jet. In one embodiment the deflecting member can include a liquid guide formed by injecting a fluid out of an outlet nozzle so that the liquid guide extends longitudinally away from the outlet nozzle. In another embodiment the deflecting member can include an array of solid pellets injected through an outlet in a direction of the emerging high speed jet and configured to collide with the emerging jet thereby deflecting its initial direction.

Discover hidden collaborations