General Directorate of Mineral Research and Exploration MTA of Turkey

Ankara, Turkey

General Directorate of Mineral Research and Exploration MTA of Turkey

Ankara, Turkey
SEARCH FILTERS
Time filter
Source Type

Yilmaz I.O.,Middle East Technical University | Goncuoglu M.C.,Middle East Technical University | DemIray D.G.,General Directorate of Mineral Research and Exploration MTA of Turkey | GedIk I.,General Directorate of Mineral Research and Exploration MTA of Turkey
Turkish Journal of Earth Sciences | Year: 2015

Lower-middle Devonian iron-bearing successions were studied along 2 measured stratigraphic sections in the Çamdağ region of NW Anatolia. Ironstones in the upper part of the Fındıklı Formation in Kabalakdere are characterized by alternating red and green mudstones and sandstones at the bottom, followed by a series of dolomite, dolomitic limestone with oolitic ironstones, and chamositic mudstones at the top. Conodonts from these carbonates indicate the delta–pesavis zones of the late Lochkovian. The 12- to 45-m-thick Ferizli Formation unconformably overlies the Fındıklı Formation with a quartz-arenite succession at the bottom. The formation comprises alternating red, iron-rich limestones and dolomitic limestones, where iron-rich bioclastic grainstones are more dominant than iron-rich oolitic grainstones. The dolomitic limestones in this succession mark the ensensis and hemiansatus zones of the middle Givetian age. Mineralogically, the carbonates are dominated by goethitized and chamositized fossil fragments and chamositic oolites. In the oolitic facies, the oolites are made up of iron-bearing carbonates/iron, the bioclast of micritized/ironized brachiopods, and crinoids, whereas the matrix includes goethite, brown iron-silicates, chamosite, sideritic oolites, quartz clasts, and brachiopods. Partial iron precipitation within microborings or precipitation along the spine holes on echinoid grains is observed in the bioclastic grainstone/ biosparite facies. Iron peloids are also recognized in the grainstone facies. Iron precipitation could be explained as precipitation of transported and dissolved iron from a terrestrial environment under wet/subtropical climate conditions within oxidizing and increased pH conditions, or as dissolved iron transported by upwelling currents over the shelves and precipitated under an oxidizing environment. The cyclic occurrence of primary iron in a marine carbonate environment and its extensive distribution over large areas indicates that a controlling mechanism for iron-rich carbonates and mudstones could be related to the cooperation of climate, sea level, and oceanographic changes in the middle Givetian. During the late Lochkovian, the same or very similar controlling factors might have operated, where the alternation of red mudstones can be explained by lateral facies changes or changes in terrestrial/nutrient influx. © 2014 TUBITAK. All rights reserved.

Loading General Directorate of Mineral Research and Exploration MTA of Turkey collaborators
Loading General Directorate of Mineral Research and Exploration MTA of Turkey collaborators