Entity

Time filter

Source Type

INDIANAPOLIS, IN, United States

Grant
Agency: Department of Health and Human Services | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 154.28K | Year: 2011

DESCRIPTION (provided by applicant): The overall goal of this proposal is to design and develop a type of cryopreservation media and an easy-to-use cooling device that allow the long-term storage and safe shipment of animal model germplasm (embryos and spermatozoa) and embryonic stem cells (ESCs) at -80oC. Storage and maintenance of valuable genotypes of animal model species as live animal lines would be wholly impractical [Critser,2000]. Banking lines as cryopreserved germplasm and ESCs, and restoring of these cells into live, reproductive viable animals is routine in many laboratories and animal resource centers across the world. However, due to the use of liquid nitrogen (LN2), LN2 dewars and complicated cooling devices, storage and shipment of these cryopreserved cells is a large burden to the daily operation of these institutes. Therefore, lowering the cost of these procedures will save hundreds of thousands of dollars annually. In this proposal, we plan to develop an aqueous solution with cryoprotectants (CPAs) that is thermodynamically stable at temperatures as high as -80oC, so that the cryopreserved samples can be stored and shipped using conventional -80oC freezers and dry ice, respectively. An inexpensive, easy-to-use, self-nucleating cooling system will also be produced to further lower the associated costs and improve the outcomes of these procedures. To achieve these aims, we propose the following Specific Aims: For Phase I: (I) Design and develop a cryopreservation media that is thermodynamically stable at -80oC; (II) Empirically test the efficacy of the new cryopreservation media by cryopreserving rodent germplasm and ESCs. For Phase II: (III) Design and develop a novel, easy-to-use cooling device that will provide defined constant cooling rates and automatic seeding for the media developed in Phase I; (IV) Determine the efficacy of cryopreserving rodent germplasm and ESCs at - 80oC using the developed device and media. At the end, the proposed device and media will be produced under appropriateengineering design control and validated through biophysical tests. PUBLIC HEALTH RELEVANCE: Cryopreservation of animal model germplasm and embryonic stem cells is of critical importance for biomedical research. The overall goal of this proposal isto develop a cryopreservation media and an easy-to-use device that allow these cell types to be cooled and stored in a -80oC freezer for a long time and safely shipped on dry ice. These approaches will completely avoid the use of liquid nitrogen or complicated cooling devices, and significantly reduce the associated costs for the storage and shipment of the cryopreserved cells.


Patent
General Biotechnology, Llc | Date: 2012-03-12

Compositions and methods for culturing therapeutic cells are provided herein. According to at least one embodiment, compositions comprising cord blood plasma and lysed platelets and methods for making and using same are provided herein.


Patent
General Biotechnology, Llc | Date: 2015-09-29

Disclosed are cellular compositions and methods relating to the use of aqueous trehalose media to suspend cells. A trehalose-containing medium can be used to inhibit cellular clumping, for example upon dilution of more concentrated cellular preparations into the trehalose-containing medium. In certain embodiments cells, after cryopreservation and thawing, are combined with a trehalose-containing medium to prepare a clumping-inhibited cell suspension.


The present disclosure provides a composition comprising a bioactive fraction derived from a platelet concentrate, methods of making the bioactive fraction, and culture medium supplemented with the bioactive fraction. Preferred bioactive fractions have relatively low fibrinogen concentrations while retaining native growth factors in beneficial amounts and ratios.


Patent
General Biotechnology, Llc | Date: 2015-01-08

An auto-nucleating device includes a tube containing a crystalline cholesterol matrix. The ends of the tube are closed by a membrane that is impermeable to the cholesterol but permeable to liquids contained in a cryopreservation vessel. The auto-nucleating device provides a site for ice nucleation during freezing of the liquid within the vessel. One such cryopreservation vessel is a flexible vial having a closed port at one adapted to be pierced by a needle to withdraw the liquid within, and an opposite end that is initially open to receive the liquid. Another vessel includes an adaptor mounted to liquid container with a tubular branch closed by a needle septum and another tubular branch provided with a barbed fitting for engaging a flexible tube that terminates in a needle septum. In another embodiment, the vessel includes an inlet and vent branch at the top of the container and an outlet septum at a bottom opening.

Discover hidden collaborations